COMPUTER-UNDERSTANDABLE MATHEMATICS

Josef Urban

Czech Technical University
Outline

What Is Formal (Computer-Understandable) Mathematics?

Automated Theorem Proving

Examples of Formal Proof

What Has Been Formalized?

Foundations and Other Issues

Flyspeck
Who Am I To Tell You?

• Original a student of math interested in automation of reasoning
• Wanted to learn math reasoning from large math libraries
• Wrote some formalizations
• Involved with several formal systems/projects
• Today mostly working on AI and automated reasoning over large libraries
• By no means an expert on every system I will talk about! (nobody is)
What Is Formal (Computer-Undertandable) Mathematics

- Conceptually very simple:
- Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them
- Use the computer to check that your proofs follow the rules
- But in practice, it turns out not to be so simple
OK, So Where Are The Hard Parts?

- Precise computer encoding of the mathematical language
 - How do you exactly encode a graph, a category, real numbers, \mathbb{R}^n, division, differentiation, computation
 - Lots of representation issues
 - Fluent switching between different representations
- Precise computer understanding of the mathematical proofs
 - “the following reasoning holds up to a set of measure zero”
 - “use the method introduced in the above paragraph”
 - “subdivide and jiggle the triangulation so that ...”
 - “the rest is a standard diagonalization argument”
Further Issues

- What foundations? (Set theory, higher-order logic, type theory, ...)
- What input syntax?
- What automation methods?
- What search methods?
- What presentation methods?
Digression: Automated Theorem Proving
Propositional – SATisfiability solving

- DPLL- Davis–Putnam–Logemann–Loveland algorithm
- choosing a literal
- assigning a truth value to it
- simplifying the formula
- recursively check if the simplified formula is satisfiable
- unit propagation
- Pure literal elimination
- clause learning
- basis of many more-involved algorithms, hardware checking, model checking, etc.
- systems: Minisat, Glucose, ...
• add theories like arithmetics, bit-arrays, etc.
• works like SAT, but simplifies the theory literals whenever possible
• very useful for software and hardware verification
• today also limited treatment of quantifiers (first-order logic):
 • instantiate first-order terms by guessing their instances
 • often incomplete for first-order logic
• systems: Z3, CVC4, Alt-Ergo, ...
• try to infer conjecture C from axioms Ax: $Ax \vdash C$
• most classical methods proceed by refutation: $Ax \land \lnot C \vdash \bot$
• $Ax \land \lnot C$ are turned into clauses: universally quantified disjunctions of atomic formulas and their negations
• skolemization is used to remove existential quantifiers
• strongest methods: resolution (generalized modus ponens) on clauses:
 • $\neg\text{man}(X) \lor \text{mortal}(X), \text{man}(\text{socrates}) \vdash \text{mortal}(\text{socrates})$
• resolution/superposition (equational) provers generate inferences, looking for the contradiction (empty clause)
• main problem: combinatorial explosion
• systems: Vampire, E, SPASS, Prover9, leanCoP, Waldmeister
1996: Bill McCune proof of Robbins conjecture (Robbins algebras are Boolean algebras)

Robbins conjecture unsolved for 50 years by mathematicians like Tarski

ATP has currently very limited use for proving new conjectures

mainly in very specialized algebraic domains: Veroff, Kinyon and Prover9

however ATP has become very useful in Interactive Theorem Proving
Interactive Theorem Proving – Formal Verification

- verify complicated mathematical proofs
- verify complicated hardware and software designs
- operating systems, compilers, protocols, etc.
- very secure proof-checking kernel implementation
- enhanced by more advanced tactics for various types of goals (e.g., arithmetical solvers)
- recently a lot of progress and large finished projects – Flyspeck
End of Digression
Irrationality of 2 (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem). \(\sqrt{2} \) is irrational. The traditional proof ascribed to Pythagoras runs as follows. If \(\sqrt{2} \) is rational, then the equation

\[
a^2 = 2b^2 \tag{4.3.1}
\]

is soluble in integers \(a, b \) with \((a, b) = 1 \). Hence \(a^2 \) is even, and therefore \(a \) is even. If \(a = 2c \), then \(4c^2 = 2b^2 \), \(2c^2 = b^2 \), and \(b \) is also even, contrary to the hypothesis that \((a, b) = 1 \). \(\square \)
Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  consider a,b such that
  4_3_1: a^2 = 2*b^2 and
    a,b are relative prime;
  a^2 is even;
  a is even;
  consider c such that a = 2*c;
  4*c^2 = 2*b^2;
  2*c^2 = b^2;
  b is even;
  thus contradiction;
end;
```
Irrationality of 2 (checkable formalization)

full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/~mptp/mml5.29.1227/html/irrat_1.html)

```wolfram
theorem Th43: :: Pythagoras’ theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  then consider a, b such that
  A1: b <> 0 and
  A2: sqrt 2 = a/b and
  A3: a,b are relative prime by Def1;
  A4: b^2 <> 0 by A1,SQUARE 1:73;
  2 = (a/b)^2 by A2,SQUARE 1:def 4
    .= a^2/b^2 by SQUARE 1:69;
  then
  4_3_1: a^2 = 2*b^2 by A4,REAL 1:43;
  then
  A5: a is even by PYTHTRIP:2;
  then consider c such that
  A6: a = 2*c by ABIAN:def 1;
  A7: 4*c^2 = (2*2)*c^2
    .= 2^2 * c^2 by SQUARE 1:def 3
    .= 2*b^2 by A6,4_3_1,SQUARE 1:68;
  2*(2*c^2) = (2*2)*c^2 by AXIOMS:16
    .= 2*b^2 by A7;
  then 2*c^2 = b^2 by REAL 1:9;
  then b^2 is even by ABIAN:def 1;
  then b is even by PYTHTRIP:2;
  then 2 divides a & 2 divides b by A5,Def2;
  then
  A8: 2 divides a gcd b by INT 2:33;
    a gcd b = 1 by A3,INT 2:def 4;
    hence contradiction by A8,INT 2:17;
end;
```
Irrationality of 2 (checkable formalization)

full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/~mptp/mm15.29.1227/html/irrat_1.html)

```
theorem Th43: :: Pythagoras’ theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  then consider a, b such that
  A1: b <> 0 and
  A2: sqrt 2 = a/b and
  A3: a,b are relative prime by Def1;
  A4: b^2 <> 0 by A1,SQUARE 1:73;
      2 = (a/b)^2 by A2,SQUARE 1:def 4
      .= a^2/b^2 by SQUARE 1:69;
      then
  4_3_1: a^2 = 2*b^2 by A4,REAL 1:43;
      then a^2 is even by ABIAN:def 1;
      then
  A5: a is even by PYTHTRIP:2;
      then consider c such that
  A6: a = 2*c by ABIAN:def 1;
  A7: 4*c^2 = (2*2)*c^2
      .= 2^2 * c^2 by SQUARE 1:def 3
      .= 2*b^2 by A6,4_3_1,SQUARE 1:68;
  2*(2*c^2) = (2*2)*c^2 by AXIOMS:16
      .= 2*b^2 by A7;
      then 2*c^2 = b^2 by REAL 1:9;
      then b^2 is even by ABIAN:def 1;
      then b is even by PYTHTRIP:2;
      then 2 divides a & 2 divides b by A5,Def2;
      then
  A8: 2 divides a gcd b by INT 2:33;
      a gcd b = 1 by A3,INT 2:def 4;
      hence contradiction by A8,INT 2:17;
end;
```
let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(2))’,
 SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
 REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
 DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
 SUBGOAL_THEN ‘~(((p / q) pow 2 = sqrt(2) pow 2)’
 (fun th -> MESON_TAC[th]) THEN
 SIMP_TAC[SQRT.Pow_2; REAL_POS; REAL.Pow_DIV] THEN
 ASM_SIMP_TAC[REAL.Eq.LDIV_EQ; REAL_OF_NUM_LT; REAL.Pow_LT;]
 ARITH_RULE ‘0 < q => ~(q = 0)’) THEN
 ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM.Pow; REAL_OF_NUM.Mul; REAL_OF_NUM.Eq]);;
Irrationality of 2 in Isabelle/HOL

```isabelle
theorem sqrt2_not_rational:
  "sqrt (real 2) $\notin \mathbb{Q}$"
proof
  assume "sqrt (real 2) $\in \mathbb{Q}$"
  then obtain m n :: nat where
    n_nonzero: "n $\neq$ 0" and sqrt_rat: "|sqrt (real 2)| $=$ real m / real n"
    and lowest_terms: "gcd m n $= 1" ..
  from n_nonzero and sqrt_rat have "real m = |sqrt (real 2)| * real n" by simp
  then have "real (m^2) = (sqrt (real 2))^2 * real (n^2)"
    by (auto simp add: power2_eq_square)
  also have "(sqrt (real 2))^2 = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: "m^2 = 2 * n^2" ..
  hence "2 dvd m^2" ..
  with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
  then obtain k where "m $= 2 * k" ..
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2_eq_square mult_ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2" ..
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)
  with lowest_terms have "2 dvd 1" by simp
  thus False by arith
qed```

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[auto | unfold Div2.double; ring].
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.
Irrationality of 2 in Metamath

\{ 
$d x y$.
\}

$(\text{The square root of 2 is irrational.})$

$sqr2irr \, \forall p \models (\text{sqr } \sqrt{2} \, e/ \mathbb{Q})$

( vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngt0t adantr cr ax0re ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos sqrgt0i breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd exp r19.23adv anc2li elnnz syl16ibr impac r19.22i2 mto elq df-nel mpbir )

( [8-Jan-02] )

\}
### Proof of Theorem sqr2irr

<table>
<thead>
<tr>
<th>Step</th>
<th>Hyp</th>
<th>Ref</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>sqrrlem2</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (x^2 = 2 \cdot (y^2)))</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>sqrrlem2</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} ((\sqrt{2}) = \frac{x}{y} \implies (x^2 = 2 \cdot (y^2))))</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2rexbia</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (x^2 = 2 \cdot (y^2)))</td>
</tr>
<tr>
<td>4</td>
<td>2, 3</td>
<td>mbir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2ge</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2pos</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>7</td>
<td>5, 6</td>
<td>sqrr0bi</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>brecq2</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>9</td>
<td>7, 8</td>
<td>mbpi</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>z2c</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>adanir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>mmrc</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>adanir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>mmng</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>adanir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>gtodiv</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>17</td>
<td>11, 13, 15, 16</td>
<td>syl3anc</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>18</td>
<td>8, 17</td>
<td>syl5ib</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>simpl</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>20</td>
<td>18, 19</td>
<td>isetid</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>isetid</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>22</td>
<td>20, 21</td>
<td>syl6ib</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>rexlmdva</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>reximi2</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>reximi2</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>26</td>
<td>4, 25</td>
<td>mto</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>eleq</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>28</td>
<td>26, 27</td>
<td>mbir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>29</td>
<td>26, 27</td>
<td>mbir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
<tr>
<td>30</td>
<td>28, 29</td>
<td>mbir</td>
<td>(\exists x \in \mathbb{N} \exists y \in \mathbb{N} (\sqrt{2}) = \frac{x}{y})</td>
</tr>
</tbody>
</table>

Colors of variables: wff set class
What Has Been Formalized?

top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1. $\sqrt{2} \notin \mathbb{Q}$
2. fundamental theorem of algebra
3. $|\mathbb{Q}| = \aleph_0$
4. $\frac{a}{b} + \frac{c}{d} \Rightarrow a^2 + b^2 = c^2$
5. $\pi(x) \sim \frac{x}{\ln x}$
6. Gödel's incompleteness theorem
7. $\left( \frac{p}{q} \right) \left( \frac{q}{p} \right) = (-1)^{\frac{p-1}{2}} \frac{q-1}{2}$
8. impossibility of trisecting the angle and doubling the cube
   ...
32. four color theorem
33. Fermat's last theorem
   ...
99. Buffon needle problem
100. Descartes rule of signs
## What Has Been Formalized?

### top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

<table>
<thead>
<tr>
<th>No.</th>
<th>Theorem</th>
<th>Formalization Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\sqrt{2} \notin \mathbb{Q}$</td>
<td>all together 88%</td>
</tr>
<tr>
<td>2.</td>
<td>fundamental theorem of algebra</td>
<td>HOL Light 86%</td>
</tr>
<tr>
<td>3.</td>
<td>$</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>4.</td>
<td>$\triangle a b c \Rightarrow a^2 + b^2 = c^2$</td>
<td>Isabelle 52%</td>
</tr>
<tr>
<td>5.</td>
<td>$\pi(x) \sim \frac{x}{\ln x}$</td>
<td>Coq 49%</td>
</tr>
<tr>
<td>6.</td>
<td>Gödel’s incompleteness theorem</td>
<td>ProofPower 42%</td>
</tr>
<tr>
<td>7.</td>
<td>$(\frac{p}{q}) (\frac{q}{p}) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}$</td>
<td>Metamath 24%</td>
</tr>
<tr>
<td>8.</td>
<td>impossibility of trisecting the angle and doubling the cube</td>
<td>ACL2 18%</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>PVS 16%</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>four color theorem</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Fermat’s last theorem</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.</td>
<td>Buffon needle problem</td>
<td></td>
</tr>
<tr>
<td>100.</td>
<td>Descartes rule of signs</td>
<td></td>
</tr>
</tbody>
</table>
What Has Been Formalized?

top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1. $\sqrt{2} \notin \mathbb{Q}$
2. fundamental theorem of algebra
3. $|\mathbb{Q}| = \aleph_0$
4. $\begin{array}{c} a \\ b \end{array} \Rightarrow a^2 + b^2 = c^2$
5. $\pi(x) \sim \frac{x}{\ln x}$
6. Gödel’s incompleteness theorem
7. $\left( \frac{p}{q} \right) \left( \frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}$
8. impossibility of trisecting the angle and doubling the cube
   
   ...
32. four color theorem
33. Fermat’s last theorem
   
   ...
99. Buffon needle problem
100. Descartes rule of signs

all together 88%
HOL Light 86%
Mizar 57%
Isabelle 52%
Coq 49%
ProofPower 42%
Metamath 24%
ACL2 18%
PVS 16%
What Has Been Formalized?

top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1. $\sqrt{2} \notin \mathbb{Q}$
2. fundamental theorem of algebra
3. $|\mathbb{Q}| = \aleph_0$
4. $a \divides c \Rightarrow a^2 + b^2 = c^2$
5. $\pi(x) \sim \frac{x}{\ln x}$
6. Gödel's incompleteness theorem
7. $(\frac{p}{q}) (\frac{q}{p}) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}$
8. impossibility of trisecting the angle and doubling the cube

... all together 88%

HOL Light 86%

Mizar 57%

Isabelle 52%

Coq 49%

ProofPower 42%

Metamath 24%

ACL2 18%

PVS 16%

32. four color theorem
33. Fermat’s last theorem

99. Buffon needle problem
100. Descartes rule of signs
Big Formalizations

- Kepler Conjecture (Hales et al., 2014, HOL Light, Isabelle)
- Feit-Thompson (odd-order) theorem
  - Two graduate books
  - Gonthier et al., 2012, Coq
- Compendium of Continuous Lattices (CCL)
  - 60% of the book formalized in Mizar
  - Bancerek, Trybulec et al., 2003
- The Four Color Theorem (Gonthier and Werner, 2005, Coq)
Mid-size Formalizations

- Gödel’s First Incompleteness Theorem — Natarajan Shankar (NQTHM), Russell O’Connor (Coq)
- Brouwer Fixed Point Theorem — Karol Pak (Mizar), John Harrison (HOL Light)
- Jordan Curve Theorem — Tom Hales (HOL Light), Artur Kornilowicz et al. (Mizar)
- Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL), John Harrison (HOL Light)
- Gödel’s Second incompleteness Theorem — Larry Paulson (Isabelle/HOL)
- Central Limit Theorem — Jeremy Avigad (Isabelle/HOL)
Large Software Verifications

- seL4 – operating system microkernel
  - Gerwin Klein and his group at NICTA, Isabelle/HOL
- CompCert – a formally verified C compiler
  - Xavier Leroy and his group at INRIA, Coq
- EURO-MILS – verified virtualization platform
  - ongoing 6M EUR FP7 project, Isabelle
- CakeML – verified implementation of ML
  - Magnus Myreen, HOL4
Substantial Libraries

- Mizar – Topology, Continuous lattices
- HOL Light – Analysis and topology in Euclidean space
- Coq – Finite Algebra (Mathematical Components)
- Isabelle/HOL – Probability and Measure Theory
theorem (in prob_space) central_limit_theorem:
  fixes
  X :: "nat ⇒ 'a ⇒ real" and
  μ :: "real measure" and
  σ :: real and
  S :: "nat ⇒ 'a ⇒ real"
  assumes
  X_indep: "indep_vars (λi. borel) X UNIV" and
  X_integrable: "∀n. integrable M (X n)" and
  X_mean_0: "∀n. expectation (X n) = 0" and
  σ_pos: "σ > 0" and
  X_square_integrable: "∀n. integrable M (λx. (X n x)^2)" and
  X_variance: "∀n. variance (X n) = σ^2" and
  X_distrib: "∀n. distr M borel (X n) = μ"
  defines
  "S n ≡ λx. ∑i<n. X i x"
  shows
  "weak_conv m (λn. distr M borel (λx. S n x / sqrt (n * σ^2)))
   (density l borel std_normal_density)"
Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
  for G being finite Group, p being prime (natural number) holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
  for G being finite Group, p being prime (natural number) holds
  (for H being Subgroup of G st H is_p-group_of_prime p holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P) &
  (for P1,P2 being Subgroup of G st P1 is_Sylow_p-subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p holds P1,P2 are_conjugated);

theorem :: GROUP_10:15
  for G being finite Group, p being prime (natural number) holds
  card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
  card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
Gödel Theorems in Isabelle

```isabelle
theorem Goedel_I:
 assumes "¬ \{\} \vdash Fls"
 obtains δ where
 "\{\} \vdash δ IFF Neg (PfP [δ])"
 "¬ \{\} \vdash δ"
 "¬ \{\} \vdash Neg δ"
 "eval_fm e δ"
 "ground_fm δ"

theorem Goedel_II:
 assumes "¬ \{\} \vdash Fls"
 shows "¬ \{\} \vdash Neg (PfP [Fls])"
```

http://afp.sourceforge.net/entries/Incompleteness.shtml
|- ((\n. \(\text{CARD} \ \{p \mid \text{prime } p \land p \leq n\}\)) / (\n / \log(\n)))
---\rightarrow \ &1) \ sequentially
Foundational Wars - Set Theory

- Mizar, MetaMath, Isabelle/ZF
- ZFC
- Tarski-Grothendieck (added inaccessible cardinals)
- strong choice
- issues:
  - how to add a type system
  - how to handle higher-order reasoning
  - how to compute
HOL4, HOL Light, Isabelle/HOL, ProofPower, HOL Zero

based on polymorphic simply-typed lambda calculus

but quickly added extensionality and choice (classical)

weaker than set theory - canonical model is $V_{\omega+\omega} \setminus \{0\}$

**HOL universe**: $U$ is a set of non-empty sets, such that

- $U$ is closed under non-empty subsets, finite products and powersets
- an infinite set $I \in U$ exists
- a choice function $ch$ over $U$ exists (i.e., $\forall X \in U : ch(X) \in X$)
- guarantees also function spaces ($I \rightarrow I$)

Isabelle adds typeclasses, ad-hoc overloading

issues:

- can be too weak
- not so well known foundations as ZFC
- the type system does not have dependent types (e.g. matrix over a ring)
- how to compute
Coq, Agda, NuPrl, HoTT
constructive type theory
Curry-Howard isomorphism:
  • formulas as types
  • proofs as terms
proofs are in your universe of discourse!
two proofs of the same formula might not be equal!
what does it mean?
excluded middle avoided, classical math not supported so much
computation is a big topic
very rich type system
lots of research issues for constructivists
non-experts typically don’t have a good idea about the semantics of it all
‘they have been calling it baroque, but it’s almost rococo’ (A. Trybulec)
Foundational Wars - Logical Frameworks

- LF, Twelf, MMT, Isabelle?, Metamath?
- Try to cater for everybody
- Let users encode their logic and inference rules (deep embedding)
- issues:
  - None of them really used
  - maintenance – the embedded systems evolve fast
  - efficiency: Isabelle/Pure ended up enriching its kernel to fit HOL
  - efficiency: things like computation
  - probably needs a lot of investment to benefit multiple foundations
  - more ad-hoc translations between systems are often cheaper to develop
Implementation

- Most systems written in ML (OCAML or SML)
- Sometimes Lisp, Pascal, C++
- LCF approach (Milner): small inference kernel
- isolated by an abstract ML datatype "theorem"
- this means that only a small number of allowed inferences can result in a "theorem"
- Every more complicated procedure has to produce the kernel inferences, to get a "theorem"
- HOL Light - about 400 lines for the whole kernel
- Coq - about 20000 lines
module Hol : Hol_kernel = struct

  type hol_type = Tyvar of string
  | Tyapp of string * hol_type list

  type term = Var of string * hol_type
  | Const of string * hol_type
  | Comb of term * term
  | Abs of term * term

  type thm = Sequent of (term list * term)
best for math or best for computer science?

- **math proof**
  - statements: small, easy to get right
  - proofs: intricate, interesting
  - top systems: Coq/HOL Light/Mizar

- **cs proof**
  - statements: large, easy to get wrong
  - proofs: straightforward, mostly boring
  - top systems: Coq/Isabelle/HOL4/ACL2/PVS
best for math or best for computer science?

- **math proof**
  - statements: small, easy to get right
  - proofs: intricate, interesting
  - top systems: Coq/HOL Light/Mizar

- **cs proof**
  - statements: large, easy to get wrong
  - proofs: straightforward, mostly boring
  - top systems: Coq/Isabelle/HOL4/ACL2/PVS

one system to rule them all?

*should formal proofs be readable?*
best for math or best for computer science?

- **math proof**
  statements: small, easy to get right
  proofs: intricate, interesting
  top systems: Coq/HOL Light/Mizar

- **cs proof**
  statements: large, easy to get wrong
  proofs: straightforward, mostly boring
  top systems: Coq/Isabelle/HOL4/ACL2/PVS

one system to rule them all?

*should formal proofs be readable?*
so ... which systems?

two worlds:

- Coq
- the HOLs
so … which systems?

two worlds, four systems:

- Coq

- the HOLs
  - Isabelle/HOL
  - HOL Light
  - HOL4
so . . . which systems?

two worlds, four systems:

- Coq
- the HOLs
  - Isabelle/HOL
  - HOL Light
  - HOL4

why not also Mizar . . . ?

proofs are ‘too manual’, not enough automation
so ... which systems?

two worlds, four systems:

- Coq
- the HOLs
  - Isabelle/HOL
  - HOL Light
  - HOL4

why not also Mizar ...?

proofs are ‘too manual’, not enough automation
but: source of great ideas

- better foundations (set theory)
- better type system (soft typing)
Feit-Thompson in Coq (Georges Gonthier)

- Graph of Coq formalizations: http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html
- Final result: http://ssr2.msr-inria.inria.fr/~jenkins/current/Ssreflect.PFsection14.html#Feit_Thompson
- Correspondence to the books: http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html
Example: The Flyspeck project

- Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

\[ V = \frac{\pi}{\sqrt{18}} \approx 74\% \]

- Proved by Hales in 1998, 300-page proof + computations
- Big: Annals of Mathematics gave up reviewing after 4 years
- But referees of the Annals of Mathematics claim they cannot verify the programs

\[
\sqrt[4]{4x^2 \left( \frac{x_2 x_4 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6) + + x_1 x_5 (x_2 - x_1 + x_3 + x_4 - x_5 + x_6) + + x_3 x_6 (x_2 + x_1 - x_3 + x_4 + x_5 - x_6) - - x_1 x_3 x_4 - x_2 x_3 x_5 - x_2 x_1 x_6 - x_4 x_5 x_6}{x_2 x_4 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6) + + x_1 x_5 (x_2 - x_1 + x_3 + x_4 - x_5 + x_6) + + x_3 x_6 (x_2 + x_1 - x_3 + x_4 + x_5 - x_6) - - x_1 x_3 x_4 - x_2 x_3 x_5 - x_2 x_1 x_6 - x_4 x_5 x_6} \right)} < \tan(\frac{\pi}{2} - 0.74)
\]
Example: The Flyspeck project

- Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

\[ V = \frac{\pi}{\sqrt{18}} \approx 74\% \]

- Formal proof finished in 2014
- 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- All of it computer-understandable and verified in HOL Light:
  - `polyhedron s \ /\ c face_of s ==> polyhedron c`
- However, this took 20 – 30 person-years!
Kepler conjecture formally

\[- \text{packing } V \iff \neg \exists u \, \neg \exists v. u \in V \land v \in V \land \text{dist}(u,v) < 2 \implies u = v \]

\[- \text{the\_kepler\_conjecture} \iff \forall V. \text{packing } V \implies \exists c. \forall r. r \geq 1 \implies (\text{CARD}(V \cap \text{ball}(\text{vec } 0,r))) \leq \pi \cdot r^3 / \sqrt{18} + c \cdot r^2 \]
Kepler conjecture informally

In words, we define the Kepler conjecture to be the following claim: for every packing $V$, there exists a real number $c$ such that for every real number $r \geq 1$, the number of elements of $V$ contained in an open spherical container of radius $r$ centered at the origin is at most

$$\frac{\pi r^3}{\sqrt{18}} + c r^2.$$

An analysis of the proof shows that there exists a small computable constant $c$ that works uniformly for all packings $V$, but we only formalize the weaker statement that allows $c$ to depend on $V$. The restriction $r \geq 1$, which bounds $r$ away from 0, is needed because there can be arbitrarily small containers whose intersection with $V$ is nonempty.
Parts of Flyspeck

- combination of traditional mathematical argument and three separate bodies of computer calculations.
- nearly a thousand nonlinear inequalities.
- The combinatorial structure of each possible counterexample to the Kepler conjecture is encoded as a plane graph satisfying a number of restrictive conditions. Any graph satisfying these conditions is said to be *tame*.
- A list of all tame plane graphs up to isomorphism has been generated by an exhaustive computer search. The formal statement that every tame plane graph is isomorphic to one of these cases. This was part was done in Isabelle and imported into HOL Light.
- a large collection of linear programs.
Kepler conjecture formally

URL: https://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/general/the_kepler_conjecture.hl?spec=svn3759&r=3701#69

|- the_nonlinear_inequalities /
   import_tame_classification
   ==> the_kepler_conjecture

|- g in PlaneGraphs /
   tame g ==> fgraph g in Archive

(every tame plane graph is isomorphic to a graph appearing in the archive)
Kepler conjecture formally

- the_nonlinear_inequalities := conjunction of several hundred nonlinear inequalities.
- The domains of these partitioned $\rightarrow$ 23,000 inequalities
- 5k-9k CPU hours on Microsoft Azure cloud and independently on our big server in Nijmegen
• Mark Adams: HOL Zero system
• more secure than HOL Light, indepedently implemented
• an fast exporter of the HOL Light verifications based on kernel modifications
• verification of every HOL Light kernel step inside HOL Zero
• so far only for the text part (the other parts are much slower)
Flyspeck: What Remains?

- Join the independent parts more tightly
- Either export the HOL Light parts completely to Isabelle/HOL
- Or implement very fast computation in HOL Light ...
- ... and re-do the Isabelle part in HOL Light
- safe parallelized computing inside HOL Light
- to ensure that the nonlinear parts are merged safely
Flyspeck: Informal and Formal

- The flyspeck book (Dense Sphere Packings):
- You can get the source of the book at:
  - https://code.google.com/p/flyspeck/source/browse/trunk/#trunk%2Fkepler_tex
- Demo of the informal/formal Wiki at
  mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
Informal Formal

Definition of [fan, blade] DSKAGVP (fan) [fan ↔ FAN]

Let \((V, E)\) be a pair consisting of a set \(V \subseteq \mathbb{R}^2\) and a set \(E\) of unordered pairs of distinct elements of \(V\). The pair is said to be a fan if the following properties hold.

1. (CARDINALITY) \(V\) is finite and nonempty. [cardinality ↔ fan1]
2. (ORIGIN) \(0 \notin V\). [origin ↔ fan2]
3. (NONPARALLEL) If \(\{v, w\} \in E\), then \(v\) and \(w\) are not parallel. [nonparallel ↔ fan6]
4. (INTERSECTION) For all \(\varepsilon, \varepsilon' \in E \cup \{\{v\} : v \in V\}\), [intersection ↔ fan7]

\[ C(\varepsilon) \cap C(\varepsilon') = C(\varepsilon \cap \varepsilon'). \]

When \(\varepsilon \in E\), call \(C^0(\varepsilon)\) or \(C(\varepsilon)\) a blade of the fan.

Basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.

**Lemma [easy consequences of the definition]** WCXASPV (fan)

If \((V, E)\) is a fan, then for every \(E' \subseteq E\), \((V, E')\) is also a fan.

**Proof**

This proof is elementary.

**Lemma [fan cyclic]** XOHLED

\([E(v) ↔ set_of_edge]\) Let \((V, E)\) be a fan. For each \(v \in V\), the set

\[ E(v) = \{w \in V : \{v, w\} \in E\} \]

is cyclic with respect to \((0, v)\).

**Proof**

If \(w \in E(v)\), then \(v\) and \(w\) are not parallel. Also, if \(w \neq w' \in E(v)\), then...
Flyspeck: Informal and Formal Used to Learn Formal Parsing

- Demo of the probabilistic/semantic parser trained on informal/formal Flyspeck pairs:
  - http://colo12-c703.uibk.ac.at/hh/parse.html
- The linguistic/semantic methods explained in
  http://dx.doi.org/10.1007/978-3-319-22102-1_15
- Compare with Wolfram Alpha:
  - https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+cos+pi+%2F+2
Online parsing system trained on Flyspeck informal/formal pairs

- “sin ( 0 * x ) = cos pi / 2”
- produces 16 parses, we order them by their probability resulting from training on related informal/formal pairs
- 11 of the 16 parses get type-checked by HOL Light as follows
- with all but three being proved by HOL(y)Hammer

\[
\begin{align*}
\sin (0 \times A0) &= \cos (\pi / 2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\sin (0 \times A0) &= \cos (\pi / &2) & \text{where A0:real} \\
\end{align*}
\]
The Stacks project: a first version of an automated concept linker

- The Stacks project: a large growing open-source book on algebraic stacks (about 5k pages in PDF)
- http://stacks.math.columbia.edu/
- The definition of algebraic stack:
  http://stacks.math.columbia.edu/tag/03YQ
- Our experimental auto-linking version of the web presentation:
  http://mws.cs.ru.nl:8008/tag/03YQ
- Can we link it with reasonably high success rate?
- Can we turn it into formal-math code (written in Mizar/Isabelle/HOL/Coq)?
- Can we verify and/or prove automatically a nontrivial fraction of the lemmas?
Chapter 71: Algebraic Stacks > Section 71.12: Algebraic stacks

Lemma 71.12.4. Let $S$ be a scheme contained in $\text{Sch}_{fppf}$. Let $X, Y$ be categories over $(\text{Sch}/S)_{fppf}$. Assume $X, Y$ are equivalent as categories over $(\text{Sch}/S)_{fppf}$. Then $X$ is an algebraic stack if and only if $Y$ is an algebraic stack. Similarly, $X$ is a Deligne-Mumford stack if and only if $Y$ is a Deligne-Mumford stack.

Proof. Assume $X$ is an algebraic stack (resp. a Deligne-Mumford stack). By Stacks, Lemma 8.5.4 this implies that $Y$ is a stack in groupoids over $\text{Sch}_{fppf}$. Choose an equivalence $f : X \to Y$ over $\text{Sch}_{fppf}$. This gives a $2$-commutative diagram

\[
\begin{array}{cccccc}
X & \xrightarrow{f} & Y \\
\Delta_X & \downarrow & \Delta_Y \\
X \times X & \xrightarrow{f \times f} & Y \times Y
\end{array}
\]

whose horizontal arrows are equivalences. This implies that $\Delta_Y$ is representable by algebraic spaces according to Lemma 71.9.3. Finally, let $U$ be a scheme over $S$, and let $x : (\text{Sch}/U)_{fppf} \to X$ be a $1$-morphism which is surjective and smooth (resp. étale). Considering the diagram

\[
\begin{array}{cccccc}
(\text{Sch}/U)_{fppf} & \xrightarrow{id} & (\text{Sch}/U)_{fppf} \\
\downarrow & \downarrow & \downarrow \\
(\text{Sch}/U)_{fppf} & \xrightarrow{id} & (\text{Sch}/U)_{fppf}
\end{array}
\]

and applying Lemma 71.10.2 we conclude that $x \circ f$ is surjective and smooth (resp. étale) as desired.

<< Previous tag

Comments (0)

There are no comments yet for this tag.

Next tag >>
ProofWiki vs Mizar Example - The ProofWiki version

ProofWiki is an informal-but-very-controlled proof corpus, sample proof: https://proofwiki.org/wiki/Zero_Element_is_Unique

== Theorem ==
Let \((S, \circ)\) be an [[Definition:Algebraic Structure|algebraic structure]] that has a [[Definition:Zero Element|zero element]] \(z \in S\). Then \(z\) is unique.

== Proof ==
Suppose \(z_1\) and \(z_2\) are both zeroes of \((S, \circ)\).
Then by the definition of [[Definition:Zero Element|zero element]]:
\[
\begin{align*}
z_2 \circ z_1 &= z_1 &\text{by dint of } z_1 \text{ being a zero;} \\
z_2 \circ z_1 &= z_2 &\text{by dint of } z_2 \text{ being a zero.}
\end{align*}
\]
So \(z_1 = z_2 \circ z_1 = z_2\).
So \(z_1 = z_2\) and there is only one zero after all.

{{qed}}

// NB: Informal proofs are buggy!
Existing Mizar theorem – slightly different from ProofWiki:
Th9: e1 is_a_left_unity_wrt o & e2 is_a_right_unity_wrt o implies e1 = e2
proof
assume that A1: e1 is_a_left_unity_wrt o and
A2: e2 is_a_right_unity_wrt o;
thus e1 = o.(e1,e2) by A2,Def6 .= e2 by A1,Def5;
end;

Mizar equivalent of the ProofWiki theorem – all steps proved automatically:
z1 is_a_unity_wrt o & z2 is_a_unity_wrt o implies z1 = z2
proof
assume that A1: z1 is_a_unity_wrt o and
A2: z2 is_a_unity_wrt o;
A3: o.(z2,z1) = z1 by Th3,A2; ::= [ATP]
A4: o.(z2,z1) = z2 by Def 6,Def 7,A1,A3; ::= [ATP]

hence z1 = z2 by Th9,A1,Def 7,A2; ::= [ATP]
end;