
COMPUTER-UNDERSTANDABLE MATHEMATICS

Josef Urban

Czech Technical University

1 / 57

Outline

What Is Formal (Computer-Understandable) Mathematics?

Automated Theorem Proving

Examples of Formal Proof

What Has Been Formalized?

Foundations and Other Issues

Flyspeck

2 / 57

Who Am I To Tell You?

� Original a student of math interested in automation of reasoning
� Wanted to learn math reasoning from large math libraries
� Wrote some formalizations
� Involved with several formal systems/projects
� Today mostly working on AI and automated reasoning over large libraries
� By no means an expert on every system I will talk about! (nobody is)

3 / 57

What Is Formal (Computer-Undertandable)
Mathematics

� Conceptually very simple:
� Write all your axioms and theorems so that computer understands them
� Write all your inference rules so that computer understands them
� Use the computer to check that your proofs follow the rules
� But in practice, it turns out not to be so simple

4 / 57

OK, So Where Are The Hard Parts?

� Precise computer encoding of the mathematical language
� How do you exactly encode a graph, a category, real numbers, Rn, division,

differentiation, computation
� Lots of representation issues
� Fluent switching between different representations

� Precise computer understanding of the mathematical proofs
� “the following reasoning holds up to a set of measure zero”
� “use the method introduced in the above pararaph”
� “subdivide and jiggle the triangulation so that ...”
� “the rest is a standard diagonalization argument”

5 / 57

Further Issues

� What foundations? (Set theory, higher-order logic, type theory, ...)
� What input syntax?
� What automation methods?
� What search methods?
� What presentation methods?

6 / 57

Digression: Automated Theorem Proving

7 / 57

Propositional – SATisfiability solving

� DPLL- Davis–Putnam–Logemann–Loveland algorithm
� choosing a literal
� assigning a truth value to it
� simplifying the formula
� recursively check if the simplified formula is satisfiable
� unit propagation
� Pure literal elimination
� clause learning
� basis of many more-involved algorithms, hardware checking, model

checking, etc.
� systems: Minisat, Glucose, ...

8 / 57

Satisfiability Modulo Theories – SMT

� add theories like arithmetics, bit-arrays, etc.
� works like SAT, but simplifies the theory literals whenever possible
� very useful for software and hardware verification
� today also limited treatment of quantifiers (first-order logic):
� instantiate first-order terms by guessing their instances
� often incomplete for first-order logic
� systems: Z3, CVC4, Alt-Ergo, ...

9 / 57

First Order – Automated Theorem Proving (ATP)

� try to infer conjecture C from axioms Ax : Ax ` C
� most classical methods proceed by refutation: Ax ^ :C ` ?
� Ax ^ :C are turned into clauses: universally quantified disjunctions of

atomic formulas and their negations
� skolemization is used to remove existential quantifiers
� strongest methods: resolution (generalized modus ponens) on clauses:
� :man(X) _mortal(X);man(socrates) ` mortal(socrates)
� resolution/superposition (equational) provers generate inferences,

looking for the contradiction (empty clause)
� main problem: combinatorial explosion
� systems: Vampire, E, SPASS, Prover9, leanCoP, Waldmeister

10 / 57

Using First Order Automated Theorem Proving (ATP)

� 1996: Bill McCune proof of Robbins conjecture (Robbins algebras are
Boolean algebras)

� Robbins conjecture unsolved for 50 years by mathematicians like Tarski
� ATP has currently very limited use for proving new conjectures
� mainly in very specialized algebraic domains: Veroff, Kinyon and Prover9
� however ATP has become very useful in Interactive Theorem Proving

11 / 57

Interactive Theorem Proving – Formal Verification

� verify complicated mathematical proofs
� verify complicated hardware and software designs
� operating systems, compilers, protocols, etc.
� very secure proof-checking kernel implementation
� enhanced by more advanced tactics for various types of goals (e.g.,

arithmetical solvers)
� recently a lot of progress and large finished projects – Flyspeck

12 / 57

End of Digression

13 / 57

Irrationality of 2 (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem).
p

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

p
2

is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a;b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a;b) = 1. �

14 / 57

Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;

15 / 57

Irrationality of 2 (checkable formalization)
full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/
~mptp/mml5.29.1227/html/irrat_1.html)

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
then consider a, b such that

A1: b <> 0 and
A2: sqrt 2 = a/b and
A3: a,b are relative prime by Def1;
A4: b^2 <> 0 by A1,SQUARE 1:73;
2 = (a/b)^2 by A2,SQUARE 1:def 4
.= a^2/b^2 by SQUARE 1:69;

then
4_3_1: a^2 = 2*b^2 by A4,REAL 1:43;
then a^2 is even by ABIAN:def 1;
then

A5: a is even by PYTHTRIP:2;
then consider c such that

A6: a = 2*c by ABIAN:def 1;
A7: 4*c^2 = (2*2)*c^2

.= 2^2 * c^2 by SQUARE 1:def 3

.= 2*b^2 by A6,4_3_1,SQUARE 1:68;
2*(2*c^2) = (2*2)*c^2 by AXIOMS:16

.= 2*b^2 by A7;
then 2*c^2 = b^2 by REAL 1:9;
then b^2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;
then 2 divides a & 2 divides b by A5,Def2;
then

A8: 2 divides a gcd b by INT 2:33;
a gcd b = 1 by A3,INT 2:def 4;
hence contradiction by A8,INT 2:17;

end; 16 / 57

http://mizar.cs.ualberta.ca/~mptp/mml5.29.1227/html/irrat_1.html
http://mizar.cs.ualberta.ca/~mptp/mml5.29.1227/html/irrat_1.html

Irrationality of 2 (checkable formalization)
full Mizar formalization (for details, see: http://mizar.cs.ualberta.ca/
~mptp/mml5.29.1227/html/irrat_1.html)

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
then consider a, b such that

A1: b <> 0 and
A2: sqrt 2 = a/b and
A3: a,b are relative prime by Def1;
A4: b^2 <> 0 by A1,SQUARE 1:73;
2 = (a/b)^2 by A2,SQUARE 1:def 4
.= a^2/b^2 by SQUARE 1:69;

then
4_3_1: a^2 = 2*b^2 by A4,REAL 1:43;
then a^2 is even by ABIAN:def 1;
then

A5: a is even by PYTHTRIP:2;
then consider c such that

A6: a = 2*c by ABIAN:def 1;
A7: 4*c^2 = (2*2)*c^2

.= 2^2 * c^2 by SQUARE 1:def 3

.= 2*b^2 by A6,4_3_1,SQUARE 1:68;
2*(2*c^2) = (2*2)*c^2 by AXIOMS:16

.= 2*b^2 by A7;
then 2*c^2 = b^2 by REAL 1:9;
then b^2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;
then 2 divides a & 2 divides b by A5,Def2;
then

A8: 2 divides a gcd b by INT 2:33;
a gcd b = 1 by A3,INT 2:def 4;
hence contradiction by A8,INT 2:17;

end; 16 / 57

http://mizar.cs.ualberta.ca/~mptp/mml5.29.1227/html/irrat_1.html
http://mizar.cs.ualberta.ca/~mptp/mml5.29.1227/html/irrat_1.html

Irrationality of 2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

17 / 57

Irrationality of 2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
��IURP�QBQRQ]HUR�DQG�VTUWBUDW�KDYH��UHDO�P� �hVTUW��UHDO���h��UHDO�Q��E\�VLPS
��WKHQ�KDYH��UHDO��Pt�� ��VTUW��UHDO����t��UHDO��Qt��
����E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�
��DOVR�KDYH���VTUW��UHDO����t� �UHDO����E\�VLPS
��DOVR�KDYH�������UHDO��Pt�� �UHDO�����Qt���E\�VLPS
��ILQDOO\�KDYH�HT���Pt� ����Qt����
��KHQFH����GYG�Pt����
��ZLWK�WZRBLVBSULPH�KDYH�GYGBP�����GYG�P��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��WKHQ�REWDLQ�N�ZKHUH��P� ����N����
��ZLWK�HT�KDYH�����Qt� ��t��Nt��E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�PXOWBDF�
��KHQFH��Qt� ����Nt��E\�VLPS
��KHQFH����GYG�Qt����
��ZLWK�WZRBLVBSULPH�KDYH����GYG�Q��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG

18 / 57

Irrationality of 2 in Coq

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[idtac | unfold Div2.double; ring].
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.

19 / 57

Irrationality of 2 in Metamath

${
$d x y $.
$(The square root of 2 is irrational. $)
sqr2irr $p |- (sqr ‘ 2) e/ QQ $=
(vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp
cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngt0t
adantr cr ax0re ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd
exp r19.23adv anc2li elnnz syl6ibr impac r19.22i2 mto elq df-nel mpbir)
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJANOZWLWFCQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWJWJAPNWFPHZWJWFNHZWNWJWNUCWFUDUEZUFWOWNWJWPWNWIWPBNWNWGNHZW
IWPUGWNWQUFZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB
WQXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWFUMUNWGUOWFUPUQURUSW
IUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWPUHWNWQWSUCWFUDWQWGVFHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDFWBWC $.
$([8-Jan-02] $)

$}

20 / 57

Irrationality of 2 in Metamath Proof Explorer

21 / 57

What Has Been Formalized?
top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1.
p

2 62 Q
2. fundamental theorem of algebra
3. jQj = @0

4. a
b

c) a2 + b2 = c2

5. �(x) � x
ln x

6. Gödel’s incompleteness theorem

7.
�

p
q

��
q
p

�
= (�1)

p�1
2

q�1
2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 88%

HOL Light 86%

Mizar 57%
Isabelle 52%

Coq 49%
ProofPower 42%

Metamath 24%
ACL2 18%
PVS 16%

22 / 57

What Has Been Formalized?
top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1.
p

2 62 Q
2. fundamental theorem of algebra
3. jQj = @0

4. a
b

c) a2 + b2 = c2

5. �(x) � x
ln x

6. Gödel’s incompleteness theorem

7.
�

p
q

��
q
p

�
= (�1)

p�1
2

q�1
2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 88%

HOL Light 86%

Mizar 57%
Isabelle 52%

Coq 49%
ProofPower 42%

Metamath 24%
ACL2 18%
PVS 16%

22 / 57

What Has Been Formalized?
top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1.
p

2 62 Q
2. fundamental theorem of algebra
3. jQj = @0

4. a
b

c) a2 + b2 = c2

5. �(x) � x
ln x

6. Gödel’s incompleteness theorem

7.
�

p
q

��
q
p

�
= (�1)

p�1
2

q�1
2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 88%

HOL Light 86%

Mizar 57%
Isabelle 52%

Coq 49%
ProofPower 42%

Metamath 24%
ACL2 18%
PVS 16%

22 / 57

What Has Been Formalized?
top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

1.
p

2 62 Q
2. fundamental theorem of algebra
3. jQj = @0

4. a
b

c) a2 + b2 = c2

5. �(x) � x
ln x

6. Gödel’s incompleteness theorem

7.
�

p
q

��
q
p

�
= (�1)

p�1
2

q�1
2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 88%

HOL Light 86%

Mizar 57%
Isabelle 52%

Coq 49%
ProofPower 42%

Metamath 24%
ACL2 18%
PVS 16%

22 / 57

Named Theorems in the Mizar Library

23 / 57

Big Formalizations

� Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
� Feit-Thompson (odd-order) theorem

� Two graduate books
� Gonthier et all, 2012, Coq

� Compendium of Continuous Lattices (CCL)
� 60% of the book formalized in Mizar
� Bancerek, Trybulec et all, 2003

� The Four Color Theorem (Gonthier and Werner, 2005, Coq)

24 / 57

Mid-size Formalizations

� Gödel’s First Incompleteness Theorem — Natarajan Shankar (NQTHM),
Russell O’Connor (Coq)

� Brouwer Fixed Point Theorem — Karol Pak (Mizar), John Harrison (HOL
Light)

� Jordan Curve Theorem — Tom Hales (HOL Light), Artur Kornilowicz et al.
(Mizar)

� Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL), John
Harrison (HOL Light)

� Gödel’s Second incompleteness Theorem — Larry Paulson
(Isabelle/HOL)

� Central Limit Theorem – Jeremy Avigad (Isabelle/HOL)

25 / 57

Large Software Verifications

� seL4 – operating system microkernel
� Gerwin Klein and his group at NICTA, Isabelle/HOL

� CompCert – a formaly verified C compiler
� Xavier Leroy and his group at INRIA, Coq

� EURO-MILS – verified virtualization platform
� ongoing 6M EUR FP7 project, Isabelle

� CakeML – verified implementation of ML
� Magnus Myreen, HOL4

26 / 57

Substantial Libraries

� Mizar – Topology, Continuous lattices
� HOL Light – Analysis and topology in Euclidean space
� Coq – Finite Algebra (Mathematical Components)
� Isabelle/HOL – Probability and Measure Theory

27 / 57

Central Limit Theorem in Isabelle/HOL

28 / 57

Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
(for H being Subgroup of G st H is_p-group_of_prime p holds
ex P being Subgroup of G st
P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P) &

(for P1,P2 being Subgroup of G
st P1 is_Sylow_p-subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p
holds P1,P2 are_conjugated);

theorem :: GROUP_10:15
for G being finite Group, p being prime (natural number) holds

card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;

29 / 57

Gödel Theorems in Isabelle

30 / 57

Prime Number Theorem in HOL Light

|- ((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))
---> &1) sequentially

31 / 57

Foundational Wars - Set Theory

� Mizar, MetaMath, Isabelle/ZF
� ZFC
� Tarski-Grothendieck (added inaccessible cardinals)
� strong choice
� issues:

� how to add a type system
� how to handle higher-order reasoning
� how to compute

32 / 57

Foundational Wars - Higher-order logic (HOL)

� HOL4, HOL Light, Isabelle/HOL, ProofPower, HOL Zero
� based on polymorphic simply-typed lambda calculus
� but quickly added extensionality and choice (classical)
� weaker than set theory - canonical model is V!+! n f0g
� HOL universe: U is a set of non-empty sets, such that

� U is closed under non-empty subsets, finite products and powersets
� an infinite set I 2 U exists
� a choice function ch over U exists (i.e., 8X 2 U : ch(X) 2 X)
� gurantees also function spaces (I ! I)

� Isabelle adds typeclasses, ad-hoc overloading
� issues:

� can be too weak
� not so well known foundations as ZFC
� the type system does not have dependent types (e.g. matrix over a ring)
� how to compute

33 / 57

Foundational Wars - Type theory

� Coq, Agda, NuPrl, HoTT
� constructive type theory
� Curry-Howard isomorphism:

� formulas as types
� proofs as terms

� proofs are in your universe of discourse!
� two proofs of the same formula might not be equal!
� what does it mean?
� excluded middle avoided, classical math not supported so much
� computation is a big topic
� very rich type system
� lots of research issues for constructivists
� non-experts typically don’t have a good idea about the semantics of it all
� ‘they have been calling it baroque, but it’s almost rococo’ (A. Trybulec)

34 / 57

Foundational Wars - Logical Frameworks

� LF, Twelf, MMT, Isabelle?, Metamath?
� Try to cater for everybody
� Let users encode their logic and inference rules (deep embedding)
� issues:

� None of them really used
� maintenance – the embedded systems evolve fast
� efficiency: Isabelle/Pure ended up enriching its kernel to fit HOL
� efficiency: things like computation
� probably needs a lot of investment to benefit multiple foundations
� more ad-hoc translations between systems are often cheaper to develop

35 / 57

Implementation

� Most systems written in ML (OCAML or SML)
� Sometimes Lisp, Pascal, C++
� LCF approach (Milner): small inference kernel
� isolated by an abstract ML datatype "theorem"
� this means that only a small number of allowed inferences can result in a

"theorem"
� Every more complicated procedure has to produce the kernel inferences,

to get a "theorem"
� HOL Light - about 400 lines for the whole kernel
� Coq - about 20000 lines

36 / 57

HOL Light kernel - terms and types

module Hol : Hol_kernel = struct

type hol_type = Tyvar of string
| Tyapp of string * hol_type list

type term = Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term

type thm = Sequent of (term list * term)

37 / 57

best for math or best for computer science?

� math proof
statements: small, easy to get right
proofs: intricate, interesting

top systems: Coq/HOL Light/Mizar

� cs proof
statements: large, easy to get wrong
proofs: straightforward, mostly boring

top systems: Coq/Isabelle/HOL4/ACL2/PVS

one system to rule them all?
should formal proofs be readable?

38 / 57

best for math or best for computer science?

� math proof
statements: small, easy to get right
proofs: intricate, interesting

top systems: Coq/HOL Light/Mizar

� cs proof
statements: large, easy to get wrong
proofs: straightforward, mostly boring

top systems: Coq/Isabelle/HOL4/ACL2/PVS

one system to rule them all?
should formal proofs be readable?

38 / 57

best for math or best for computer science?

� math proof
statements: small, easy to get right
proofs: intricate, interesting

top systems: Coq/HOL Light/Mizar

� cs proof
statements: large, easy to get wrong
proofs: straightforward, mostly boring

top systems: Coq/Isabelle/HOL4/ACL2/PVS

one system to rule them all?
should formal proofs be readable?

38 / 57

so . . . which systems?

two worlds:

� Coq

� the HOLs

� Isabelle/HOL
� HOL Light
� HOL4

why not also Mizar . . . ?

proofs are ‘too manual’, not enough automation
but: source of great ideas

� better foundations (set theory)
� better type system (soft typing)

39 / 57

so . . . which systems?

two worlds, four systems:

� Coq

� the HOLs
� Isabelle/HOL
� HOL Light
� HOL4

why not also Mizar . . . ?

proofs are ‘too manual’, not enough automation
but: source of great ideas

� better foundations (set theory)
� better type system (soft typing)

39 / 57

so . . . which systems?

two worlds, four systems:

� Coq

� the HOLs
� Isabelle/HOL
� HOL Light
� HOL4

why not also Mizar . . . ?

proofs are ‘too manual’, not enough automation

but: source of great ideas
� better foundations (set theory)
� better type system (soft typing)

39 / 57

so . . . which systems?

two worlds, four systems:

� Coq

� the HOLs
� Isabelle/HOL
� HOL Light
� HOL4

why not also Mizar . . . ?

proofs are ‘too manual’, not enough automation
but: source of great ideas

� better foundations (set theory)
� better type system (soft typing)

39 / 57

Feit-Thompson in Coq (Georges Gonthier)

� Announcement: http:
//www.msr-inria.fr/news/feit-thomson-proved-in-coq/

� Graph of Coq formalizations: http:
//ssr2.msr-inria.inria.fr/~jenkins/current/index.html

� Final result: http://ssr2.msr-inria.inria.fr/~jenkins/
current/Ssreflect.PFsection14.html#Feit_Thompson

� Correspondence to the books: http://ssr2.msr-inria.inria.fr/
~jenkins/current/progress.html

40 / 57

http://www.msr-inria.fr/news/feit-thomson-proved-in-coq/
http://www.msr-inria.fr/news/feit-thomson-proved-in-coq/
http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/Ssreflect.PFsection14.html#Feit_Thompson
http://ssr2.msr-inria.inria.fr/~jenkins/current/Ssreflect.PFsection14.html#Feit_Thompson
http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html
http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html

Example: The Flyspeck project
� Kepler conjecture (1611): The most compact way of stacking balls of the

same size in space is a pyramid.

V =
�p
18

� 74%

� Proved by Hales in 1998, 300-page proof + computations
� Big: Annals of Mathematics gave up reviewing after 4 years
� But referees of the Annals of Mathematics claim they cannot verify the

programs
�x1x3�x2x4+x1x5+x3x6�x5x6+
+x2(�x2+x1+x3�x4+x5+x6)vuut4x2

x2x4(�x2+x1+x3�x4+x5+x6)+
+x1x5(x2�x1+x3+x4�x5+x6)+
+x3x6(x2+x1�x3+x4+x5�x6)�
�x1x3x4�x2x3x5�x2x1x6�x4x5x6

! < tan(
�

2
� 0:74)

41 / 57

Example: The Flyspeck project

� Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V =
�p
18

� 74%

� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c

� However, this took 20 – 30 person-years!

42 / 57

https://code.google.com/p/flyspeck/

Kepler conjecture formally

|- packing V <=>
(!u v. u IN V /\ v IN V /\ dist(u,v) < &2 ==> u = v)

|- the_kepler_conjecture <=>
(!V. packing V

==> (?c. !r. &1 <= r
==> &(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))

43 / 57

Kepler conjecture informally

In words, we define the Kepler conjecture to be the following claim: for every
packing V , there exists a real number c such that for every real number r � 1,
the number of elements of V contained in an open spherical container of
radius r centered at the origin is at most

� r3
p

18
+ c r2

:

An analysis of the proof shows that there exists a small computable constant
c that works uniformly for all packings V , but we only formalize the weaker
statement that allows c to depend on V . The restriction r � 1, which bounds r
away from 0, is needed because there can be arbitrarily small containers
whose intersection with V is nonempty.

44 / 57

Parts of Flyspeck

� combination of traditional mathematical argument and three separate
bodies of computer calculations.

� nearly a thousand nonlinear inequalities.
� The combinatorial structure of each possible counterexample to the

Kepler conjecture is encoded as a plane graph satisfying a number of
restrictive conditions. Any graph satisfying these conditions is said to be
tame.

� A list of all tame plane graphs up to isomorphism has been generated by
an exhaustive computer search. The formal statement that every tame
plane graph is isomorphic to one of these cases. This was part was done
in Isabelle and imported into HOL Light.

� a large collection of linear programs.

45 / 57

Kepler conjecture formally

URL: https://code.google.com/p/flyspeck/source/browse/
trunk/text_formalization/general/the_kepler_conjecture.
hl?spec=svn3759&r=3701#69

|- the_nonlinear_inequalities /\
import_tame_classification
==> the_kepler_conjecture

|- g in PlaneGraphs /\ tame g ==> fgraph g in Archive

(every tame plane graph is isomorphic to a graph
appearing in the archive)

46 / 57

https://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/general/the_kepler_conjecture.hl?spec=svn3759&r=3701#69
https://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/general/the_kepler_conjecture.hl?spec=svn3759&r=3701#69
https://code.google.com/p/flyspeck/source/browse/trunk/text_formalization/general/the_kepler_conjecture.hl?spec=svn3759&r=3701#69

Kepler conjecture formally

� the_nonlinear_inequalities := conjunction of several hundred nonlinear
inequalities.

� The domains of these partitioned ! 23,000 inequalities
� 5k-9k CPU hours on Microsoft Azure cloud and independently on our big

server in Nijmegen

47 / 57

Independent verification of Flyspeck

� Mark Adams: HOL Zero system
� more secure than HOL Light, indepedently implemented
� an fast exporter of the HOL Light verifications based on kernel

modfications
� verification of every HOL Light kernel step inside HOL Zero
� so far only for the text part (the other parts are much slower)

48 / 57

Flyspeck: What Remains?

� Join the indepent parts more tightly
� Either export the HOL Light parts completely to Isabelle/HOL
� Or implement very fast computation in HOL Light ...
� ... and re-do the Isabelle part in HOL Light
� safe parallelized computing inside HOL Light
� to ensure that the nonlinear parts are merged safely

49 / 57

Flyspeck: Informal and Formal

� The flyspeck book (Dense Sphere Packings):
� http://www.cambridge.org/us/academic/subjects/
mathematics/geometry-and-topology/
dense-sphere-packings-blueprint-formal-proof

� You can get the source of the book at:
� https://code.google.com/p/flyspeck/source/browse/
trunk/#trunk%2Fkepler_tex

� Demo of the informal/formal Wiki at
mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo

50 / 57

http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/dense-sphere-packings-blueprint-formal-proof
http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/dense-sphere-packings-blueprint-formal-proof
http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/dense-sphere-packings-blueprint-formal-proof
https://code.google.com/p/flyspeck/source/browse/trunk/#trunk%2Fkepler_tex
https://code.google.com/p/flyspeck/source/browse/trunk/#trunk%2Fkepler_tex
mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo

Aligned Formal and Informal Math - Flyspeck
Document:

Informal Formal

Definition of [fan, blade] DSKAGVP (fan) [fan FAN]

Let be a pair consisting of a set and a set of unordered pairs of distinct elements
of . The pair is said to be a fan if the following properties hold.

(CARDINALITY) is finite and nonempty. [cardinality fan1]1.
(ORIGIN) . [origin fan2]2.
(NONPARALLEL) If , then and are not parallel. [nonparallel fan6]3.
(INTERSECTION) For all , [intersection fan7]4.

When , call or a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial
consequence of the definition.

Informal Formal

Lemma [] CTVTAQA (subset-fan)

If is a fan, then for every , is also a fan.

Proof

This proof is elementary.

Informal Formal

Lemma [fan cyclic] XOHLED

[set_of_edge] Let be a fan. For each , the set

is cyclic with respect to .

Proof

If , then and are not parallel. Also, if , then

Article Raw Log in

↔

(V , E) V ⊂ R3 E
V

V ↔
0 ∉ V ↔

{v, w} ∈ E v w ↔
ε, ∈ E ∪ {{v} : v ∈ V }ε′ ↔

C(ε) ∩ C() = C(ε ∩).ε′ ε′

ε ∈ E (ε)C0 C(ε)

(V , E) ⊂ EE ′ (V ,)E ′

E(v) ↔ (V , E) v ∈ V

E(v) = {w ∈ V : {v, w} ∈ E}

(0, v)

w ∈ E(v) v w w ≠ ∈ E(v)w′

Document:

Informal Formal

#DSKAGVP?

let FAN=new_definition`FAN(x,V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fan1(x,V,E) /\ fan2(x,V,E)/\
fan6(x,V,E)/\ fan7(x,V,E)`;;

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of
the definition.

Informal Formal

let CTVTAQA=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool).
FAN(x,V,E) /\ E1 SUBSET E
==>
FAN(x,V,E1)`,

REPEAT GEN_TAC
THEN REWRITE_TAC[FAN;fan1;fan2;fan6;fan7;graph]
THEN ASM_SET_TAC[]);;

Informal Formal

let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (v:real^3).
FAN(x,V,E) /\ v IN V
==> cyclic_set (set_of_edge v V E) x v`,

MESON_TAC[CYCLIC_SET_EDGE_FAN]);;

Informal Formal

Remark [easy consequences of the definition] WCXASPV (fan)

Let be a fan.

The pair is a graph with nodes and edges . The set

is the set of edges at node . There is an evident symmetry: if and only if .

1.

[sigma_fan] [inverse1_sigma_fan] Since is cyclic, each has an azimuth
cycle . The set can reduce to a

2.

singleton. If so, is the identity map on . To make the notation less cumbersome,
denotes the value of the map at .

The property (NONPARALLEL) implies that the graph has no loops: .1.

The property (INTERSECTION) implies that distinct sets do not meet. This property of fans
is eventually related to the planarity of hypermaps.

2.

Article Raw Log in

(V , E)

(V , E) V E

{{v, w} : w ∈ E(v)}

v w ∈ E(v) v ∈ E(w)
σ ↔ σ(v)−1 ↔ E(v) v ∈ V

σ(v) : E(v) → E(v) E(v)

σ(v) E(v) σ(v, w)
σ(v) w

{v, v} ∉ E

(ε)C0

51 / 57

Flyspeck: Informal and Formal Used to Learn Formal
Parsing

� Demo of the probabilistic/semantic parser trained on informal/formal
Flyspeck pairs:

� http://colo12-c703.uibk.ac.at/hh/parse.html

� The linguistic/semantic methods explained in
http://dx.doi.org/10.1007/978-3-319-22102-1_15

� Compare with Wolfram Alpha:
� https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+
cos+pi+%2F+2

52 / 57

http://colo12-c703.uibk.ac.at/hh/parse.html
http://dx.doi.org/10.1007/978-3-319-22102-1_15
https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+cos+pi+%2F+2
https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+cos+pi+%2F+2

Online parsing system trained on Flyspeck
informal/formal pairs

� “sin (0 * x) = cos pi / 2”

� produces 16 parses, we order them by their probability resulting from
training on related informal/formal pairs

� 11 of the 16 parses get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

53 / 57

The Stacks project: a first version of an automated
concept linker

� The Stacks project: a large growing open-source book on algebraic
stacks (about 5k pages in PDF)

� http://stacks.math.columbia.edu/

� The definition of algebraic stack:
http://stacks.math.columbia.edu/tag/03YQ

� Our experimental auto-linking version of the web presentation:
� http://mws.cs.ru.nl:8008/tag/03YQ

� Can we link it with reasonably high success rate?
� Can we turn it into formal-math code (written in Mizar/Isabelle/HOL/Coq)?
� Can we verify and/or prove automatically a nontrivial fraction of the

lemmas?

54 / 57

http://stacks.math.columbia.edu/
http://stacks.math.columbia.edu/tag/03YQ
http://mws.cs.ru.nl:8008/tag/03YQ

The Stacks project: a first version of an automated
concept linker

55 / 57

ProofWiki vs Mizar Example - The ProofWiki version

ProofWiki is an informal-but-very-controlled proof corpus, sample proof:
https://proofwiki.org/wiki/Zero_Element_is_Unique
== Theorem ==
Let (S; �) be an [[Definition:Algebraic Structure|algebraic structure]] that has a
[[Definition:Zero Element|zero element]] z 2 S. Then z is unique.
== Proof ==
Suppose z1 and z2 are both zeroes of (S; �).
Then by the definition of [[Definition:Zero Element|zero element]]:
z2 � z1 = z1 by dint of z1 being a zero;
z2 � z1 = z2 by dint of z2 being a zero.
So z1 = z2 � z1 = z2.
So z1 = z2 and there is only one zero after all.
{{qed}}
// NB: Informal proofs are buggy!

56 / 57

https://proofwiki.org/wiki/Zero_Element_is_Unique

ProofWiki vs Mizar Example - The Mizar version

Existing Mizar theorem – slightly different from ProofWiki:
Th9: e1 is_a_left_unity_wrt o & e2 is_a_right_unity_wrt o
implies e1 = e2
proof

assume that A1: e1 is_a_left_unity_wrt o and
A2: e2 is_a_right_unity_wrt o;
thus e1 = o.(e1,e2) by A2,Def6 .= e2 by A1,Def5;

end;
Mizar equivalent of the ProofWiki theorem – all steps proved automatically:
z1 is_a_unity_wrt o & z2 is_a_unity_wrt o implies z1 = z2
proof
assume that A1: z1 is_a_unity_wrt o and
A2: z2 is_a_unity_wrt o;
A3: o.(z2,z1) = z1 by Th3,A2; ::[ATP]
A4: o.(z2,z1) = z2 by Def 6,Def 7,A1,A3; ::[ATP]
hence z1 = z2 by Th9,A1,Def 7,A2; ::[ATP]

end;

57 / 57

	What Is Formal (Computer-Understandable) Mathematics?
	Automated Theorem Proving
	Examples of Formal Proof
	What Has Been Formalized?
	Foundations and Other Issues
	Flyspeck

