
FEMaLeCoP: OCaml leanCoP and Fairly Efficient Learning

Cezary Kaliszyk Josef Urban Jiří Vyskočil

UIBK and ČVUT

09 November 2015

Talk Overview

� Connection Tableaux and leanCoP

� leanCoP in OCaml and HOL
� ARLT and Hammers
� Proof Certification
� Reconstruction
� Integration in HOL

� leanCoP and Learning
� MaLeCoP
� Features
� Indexing and Learning
� Advising

2 / 1

leanCoP: Lean Connection Prover (Jens Otten)

� Connected tableaux calculus
� Goal oriented, good for large theories

� Regularly beats Metis and Prover9 in CASC
� despite their much larger implementation
� very good performance on some ITP challenges

� Compact Prolog implementation, easy to modify
� Has variants for other foundations

� iLeanCoP

3 / 1

Lean connection Tableaux

fg; M ; Path
Axiom

C ; M ; fg

M
Start where C 2 M ;C is positive

C ; M ; Path [fL2g

C [fL1g; M ; Path [fL2g
Reduction where �(L1) = �(L2)

C2 n fL2g; M ; Path [fL1g C ; M ; Path
C [fL1g; M ; Path

Extension where

�(L1) = �(L2);
� is rigid;

C1 2 M ;L2 2 C2;

C2 is a copy of C1
with vars renamed

4 / 1

leanCoP: Example of Connection Tableau

fof(1,conjecture,~p).
fof(2,axiom,p => q).
fof(3,axiom,q => r).
fof(4,axiom,r => ~p).

� DNF vs CNF approach (leanCoP vs most resolution
provers)

� Axioms =) Conjecture

� : Axioms _ Conjecture

� CNF for Axioms: (2) (-p | q) & (3) (-q | r) & (4) (-r |
-p)

� DNF for : Axioms: (2) (p & -q) | (3) (q & -r) | (4) (r
& p)

� starting DNF: (1) [-p] (2) [p,-q] (3) [q,-r] (4) [r,p]

5 / 1

leanCoP: Basic Code

1 prove([Lit|Cla],Path,PathLim,Lem,Set) :-
2 %
3 (-NegLit=Lit;-Lit=NegLit) ->
4 (%
5 %
6 %
7 member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
8 ;
9 lit(NegLit,NegL,Cla1,Grnd1),

10 unify_with_occurs_check(NegL,NegLit),
11 %
12 %
13 %
14 prove(Cla1,[Lit|Path],PathLim,Lem,Set)
15),
16 %
17 prove(Cla,Path,PathLim,Lem,Set).
18 prove([],_,_,_,_).

6 / 1

leanCoP: Actual Code (Optimizations, No history)

1 prove([Lit|Cla],Path,PathLim,Lem,Set) :-
2 \+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
3 (-NegLit=Lit;-Lit=NegLit) ->
4 (
5 member(LitL,Lem), Lit==LitL
6 ;
7 member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
8 ;
9 lit(NegLit,NegL,Cla1,Grnd1),

10 unify_with_occurs_check(NegL,NegLit),
11 (Grnd1=g -> true ;
12 length(Path,K), K<PathLim -> true ;
13 \+ pathlim -> assert(pathlim), fail),
14 prove(Cla1,[Lit|Path],PathLim,Lem,Set)
15),
16 (member(cut,Set) -> ! ; true),
17 prove(Cla,Path,PathLim,[Lit|Lem],Set).
18 prove([],_,_,_,_).

7 / 1

Automated Reasoning in Large Theories

� Prove goals automatically in large formal theories
� ATP translation of MML (� 50k proofs today) [Urban03,...]

� Isabelle/HOL (� 60k proofs today) [Paulson05,Blanchette]

� HOL Light/Flyspeck (� 30k proofs today) [KU12]

� More proof assistant corpora: HOL4, ACL2, Coq

� Useful for ITP
� Sledgehammer, HOL(y)Hammer, MizAR
� But needs Reconstruction

8 / 1

Existing Proof Reconstruction

� General ATP search tactics producing ITP proof objects:
� Metis (Isabelle, HOL4)
� MESON, Prover9 (HOL Light)
� Mizar by

� Parse TSTP/SMT proofs
� Create subgoals that match ATP intermediate steps
� Automatically solve all simple subgoals
� Skolemization of type variables is an issue

� The smarter ATPs we can integrate in ITPs, the better
� Not just for the Hammers

� Need for speed
� Thousands of reconstruction steps in ITP projects

� ATP proof search blowup

9 / 1

Rewriting leanCoP in OCaml

� Parts of the Prolog technology missing in functional languages
� Use an explicit stack for keeping track of the current proof state (including
the trail of variable bindings)

� In the main prove function we add explicit arguments:
stack (stack), subst (trail) and off (offset in the trail)

� The stack keeps a list of tuples that are given as arguments to the recursive
invocations of prove

� When a proof is found, the exception ‘Solved’ is raised and the function exits
with this exception.

� An alternative would be to use the continuation passing style

10 / 1

OCaml code (No history)

1 let rec prove path lim lem stack = function (lit :: cla) ->
2 if not (exists2 eq path (lit :: cla)) then
3 let neglit = negate lit in
4 if not (exists (substeq lit) lem && (prove path lim lem stack cla; cut)) then
5 if not (fold_left (fun sf plit -> sf ||
6 try (unify_lit neglit plit; prove path lim (lit :: lem) stack cla; cut)
7 with Unify -> sf) false path) then
8 let iter_fun (lit2, cla2, ground) =
9 if lim > 0 || ground then

10 try let cla1 = unify_rename (snd lit) (lit2, cla2) in
11 prove (lit :: path) (lim - 1) lem ((if cut then lim else -1),
12 path, lim, lit :: lem, cla) :: stack) cla1 with Unify -> () in
13 try iter iter_fun (try assoc neglit lits with Not_found -> [])
14 with Cut n -> if n = lim then () else raise Cut n)))
15 | [] -> match stack with
16 (ct, path, lim, lem, cla) :: t ->
17 prove path lim lem t cla; if ct > 0 raise (Cut ct)
18 | [] -> raise Solved;;

11 / 1

Differences

� Implementation of Prolog cut (!) in OCaml:
� different mechanism in each of the three cases

� The Prolog code is elegant
� But the OCaml code is a bit more efficient.

� A simple List.exists call is enough for finding a lemma
� no need to backtrack

� For equality checking and unification under substitution we reuse MESON
code:

� substitutions as association lists
� applications of substitutions are delayed until an equality check or a unification
step

12 / 1

Eval I: HOL Light MESON calls without splitting (872 goals, 5s) 1

Prover Theorem (%) Unique

OcaML-leanCoP (cut) 759 (87.04) 2
OcaML-leanCoP (nocut) 759 (87.04) 2
Prolog-leanCoP (cut) 752 (86.23) 0
Prolog-leanCoP (nocut) 751 (86.12) 0
Metis (2.3) 708 (81.19) 26
Meson 683 (78.32) 4

any 832 (95.41)

1Evaluation outside HOL Light
13 / 1

Reconstruction of leanCoP proofs in HOL Light

� Transformation from HOL to FOL and clausification
� Tactics reuse Harrison’s MESON code
� Needs to preserve leanCoP’s goal-directed approach
� The conjecture is separated from the axioms

� All transformations are done on the CNF rather than DNF
� The two are dual

� MESON’s proof reconstruction needs modification for the use of lemmas

Very secure HOL Light certification of leanCoP proofs

14 / 1

Learning: MaLeCoP

external system:

SNoW

machine learning system

specific communication

protocol of

every external system

P1

A

E1

receives a list of IDs of advised axioms

where ordering on the list

represents usefulness of axioms

sends a query

as a list of

symbols from an

actual sub-problem

theorem prover

based on leancop

alternative prover

using same IDs of

axioms

general advisor

a cache with a binary relation of queries from

provers and answers from external systems

alternative

external system

(i.e. CAS, SMT, …)

E2

P2

15 / 1

FEMaLeCoP: Advice Overview and Used Features

� Advise the:
� selection of clause for every tableau extension step

� Proof state: weighted vector of symbols (or terms)
� extracted from all the literals on the active path
� Frequency-based weighting (IDF)
� Simple decay factor (using maximum)

� Consistent clausification
� formula ?[X]: p(X) becomes p(’skolem(?[A]:p(A),1)’)

� Advice using custom sparse naive Bayes
� association of the features of the proof states
� with contrapositives used for the successful extension steps

16 / 1

FEMaLeCoP: Data Collection and Indexing

� Slight extension of the saved proofs
� Training Data: pairs (path, used extension step)

� External Data Indexing (incremental)
� te_num: number of training examples
� pf_no: hashtable from features to number of occurrences 2 Q
� cn_no: hashtable from contrapositives to numbers of occurrences
� cn_pf_no: hashtable of maps of cn/pf co-occurrences

� Problem Specific Data
� Upon start FEMaLeCoP reads

� only current-problem relevant parts of the training data

� cn_no and cn_pf_no filtered by contrapositives in lit matrix
� pf_no and cn_pf_no filtered by possible features in the problem

17 / 1

Naive Bayes

If more than one possible extension step

Estimate relevance of each contrapositive cn by

�1 ln t +
X

f 2(f \s)

i(f) ln
�2s(f)

t
+ �3

X

f 2(f�s)

i(f) + �4
X

f 2(s�f)

i(f) ln(1�
s(f)
t

)

where

� f are the features of the path

� s are the features that co-occurred with cn

� t = cn_no(cn)

� s = cn_fp_no(cn)

� i is the IDF

� �� are experimentally chosen parameters
18 / 1

It cannot work?

But it does!

Inference speed ...

drops to about 40%, but:

Prover Proved (%)

OCaml-leanCoP 574 (27.6%)
FEMaLeCoP 635 (30.6%)
together 664 (32.0%)
(MPTP bushy problems, 60 s)

19 / 1

It cannot work? But it does!

Inference speed ... drops to about 40%, but:

Prover Proved (%)

OCaml-leanCoP 574 (27.6%)
FEMaLeCoP 635 (30.6%)
together 664 (32.0%)
(MPTP bushy problems, 60 s)

19 / 1

Summary

� OCaml version of leanCoP
� outperforms Metis and MESON, sometimes very significantly

� Reconstruction of leanCoP proofs in HOL Light
� Useful as reconstruction component of HOL(y)Hammer
� Certification of leanCoP TPTP proofs

� Learning
� Three levels of indexing
� Proper integration

� Future Work:
� Strategies, more evaluation, more HOL-based ITPs
� Intuitionistic version
� More learning algorithms

20 / 1

