FEMaLeCoP: OCaml leanCoP and Fairly Efficient Learning

Cezary Kaliszyk Josef Urban Jiří Vyskočil

UIBK and $\check{\mathrm{C}}\mathrm{VUT}$

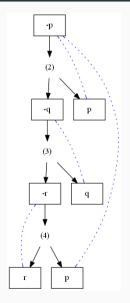
09 November 2015

- \cdot Connection Tableaux and leanCoP
- $\cdot\,$ leanCoP in OCaml and HOL
 - · ARLT and Hammers
 - Proof Certification
 - Reconstruction
 - Integration in HOL
- \cdot leanCoP and Learning
 - · MaLeCoP
 - · Features
 - Indexing and Learning
 - · Advising

- · Connected tableaux calculus
 - · Goal oriented, good for large theories
- $\cdot\,$ Regularly beats Metis and Prover9 in CASC
 - despite their much larger implementation
 - very good performance on some ITP challenges
- · Compact Prolog implementation, easy to modify
- · Has variants for other foundations
 - · iLeanCoP

```
fof(1, conjecture, ~p).
fof(2, axiom, p => q).
fof(3, axiom, q => r).
fof(4, axiom, r => ~p).
```

- DNF vs CNF approach (leanCoP vs most resolution provers)
- \cdot Axioms \Longrightarrow Conjecture
- $\cdot \neg$ Axioms \lor Conjecture
- · CNF for Axioms: (2) (-p | q) & (3) (-q | r) & (4) (-r | -p)
- DNF for ¬ Axioms: (2) (p & -q) | (3) (q & -r) | (4) (r & p)
- starting DNF: (1) [-p] (2) [p,-q] (3) [q,-r] (4) [r,p]



leanCoP: Basic Code

```
1
    prove([Lit|Cla],Path,PathLim,Lem,Set) :-
 2
 3
      (-NegLit=Lit;-Lit=NegLit) ->
 4
          2
 5
 6
 7
          member (NeqL, Path), unify_with_occurs_check (NeqL, NeqLit)
 8
        ;
 9
          lit(NegLit,NegL,Cla1,Grnd1),
10
          unify_with_occurs_check(NegL, NegLit),
11
12
13
14
          prove(Cla1, [Lit | Path], PathLim, Lem, Set)
15
        ),
16
        2
17
        prove(Cla,Path,PathLim,Lem,Set).
18
    prove([],_,_,_).
```

leanCoP: Actual Code (Optimizations, No history)

```
1
    prove([Lit|Cla],Path,PathLim,Lem,Set) :-
 2
      \+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
 3
      (-NegLit=Lit;-Lit=NegLit) ->
 4
 5
          member(LitL,Lem), Lit==LitL
 6
        ;
 7
          member (NeqL, Path), unify_with_occurs_check (NeqL, NeqLit)
 8
        :
 9
          lit(NegLit,NegL,Cla1,Grnd1),
10
          unify with occurs check (NegL, NegLit),
11
             ( Grnd1=g -> true :
12
              length(Path,K), K<PathLim -> true ;
13
              \+ pathlim -> assert(pathlim), fail ),
14
          prove(Cla1, [Lit | Path], PathLim, Lem, Set)
15
        ),
16
        ( member(cut,Set) -> ! ; true ),
17
        prove(Cla,Path,PathLim,[Lit|Lem],Set).
18
    prove([],_,_,_).
```

Automated Reasoning in Large Theories

- · Prove goals automatically in large formal theories
 - ATP translation of MML (\approx 50k proofs today)
 - \cdot Isabelle/HOL (\approx 60k proofs today)
 - \cdot HOL Light/Flyspeck (pprox 30k proofs today)
 - · More proof assistant corpora: HOL4, ACL2, Coq
- \cdot Useful for ITP
 - · Sledgehammer, HOL(y)Hammer, MizAR
 - But needs Reconstruction

Request Advice:

Input the HOL Light formula to prove and select HOL Light session:

- polyhedron p ==> convex (relative_interior p)
- Multivariate Analysis 🔹 Submit

(cache:OK)(session:OK)(parse:OK)SSSAWAAWAW

Result (3.81s): CONVEX_RELATIVE_INTERIOR POLYHEDRON_IMP_CONVEX

Replaying: SUCCESS (0.29s):SIMP_TAC[POLYHEDRON_IMP_CONVEX;CONVEX_RELATIVE_INTERIOR]

[Urban03,...] [Paulson05,Blanchette] [KU12]

Existing Proof Reconstruction

- \cdot General ATP search tactics producing ITP proof objects:
 - Metis (Isabelle, HOL4)
 - MESON, Prover9 (HOL Light)
 - Mizar by
- · Parse TSTP/SMT proofs
 - · Create subgoals that match ATP intermediate steps
 - Automatically solve all simple subgoals
 - · Skolemization of type variables is an issue
- $\cdot\,$ The smarter ATPs we can integrate in ITPs, the better
 - Not just for the Hammers
- $\cdot \,$ Need for speed
 - · Thousands of reconstruction steps in ITP projects
- $\cdot \ \mbox{ATP}$ proof search blowup

- · Parts of the Prolog technology missing in functional languages
- Use an explicit stack for keeping track of the current proof state (including the trail of variable bindings)
 - In the main prove function we add explicit arguments: stack (stack), subst (trail) and off (offset in the trail)
 - The stack keeps a list of tuples that are given as arguments to the recursive invocations of prove
 - When a proof is found, the exception 'Solved' is raised and the function exits with this exception.
- $\cdot\,$ An alternative would be to use the continuation passing style

OCaml code (No history)

```
1
    let rec prove path lim lem stack = function (lit :: cla) ->
2
      if not (exists2 eq path (lit :: cla)) then
 3
      let neglit = negate lit in
4
      if not (exists (substeq lit) lem && (prove path lim lem stack cla; cut)) then
5
      if not (fold_left (fun sf plit -> sf ||
6
        try (unify_lit neglit plit; prove path lim (lit :: lem) stack cla; cut)
7
        with Unify -> sf) false path) then
8
      let iter_fun (lit2, cla2, ground) =
9
        if lim > 0 || ground then
10
        try let cla1 = unify_rename (snd lit) (lit2, cla2) in
11
        prove (lit :: path) (lim - 1) lem ((if cut then lim else -1),
12
        path, lim, lit :: lem, cla) :: stack) clal with Unify -> () in
13
     try iter iter fun (try assoc neglit lits with Not found -> [])
14
      with Cut n -> if n = lim then () else raise Cut n)))
15
    [ [] -> match stack with
16
          (ct, path, lim, lem, cla) :: t ->
17
                prove path lim lem t cla; if ct > 0 raise (Cut ct)
18
        I [] -> raise Solved::
```

- · Implementation of Prolog cut (!) in OCaml:
 - · different mechanism in each of the three cases
- The Prolog code is elegant
 - But the OCaml code is a bit more efficient.
- \cdot A simple <code>List.exists</code> call is enough for finding a lemma
 - no need to backtrack
- For equality checking and unification under substitution we reuse MESON code:
 - substitutions as association lists
 - $\cdot\,$ applications of substitutions are delayed until an equality check or a unification step

Prover	Theorem $(\%)$	Unique
OcaML-leanCoP (cut)	759~(87.04)	2
OcaML-leanCoP (nocut)	759~(87.04)	2
Prolog-leanCoP (cut)	752 (86.23)	0
Prolog-leanCoP (nocut)	751 (86.12)	0
Metis (2.3)	708 (81.19)	26
Meson	683 (78.32)	4
any	832 (95.41)	

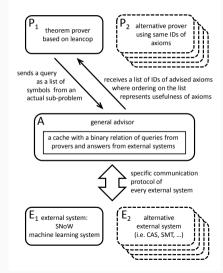
¹Evaluation outside HOL Light

Reconstruction of leanCoP proofs in HOL Light

- \cdot Transformation from HOL to FOL and clausification
 - · Tactics reuse Harrison's MESON code
 - · Needs to preserve leanCoP's goal-directed approach
 - The conjecture is separated from the axioms
- $\cdot\,$ All transformations are done on the CNF rather than DNF
 - The two are dual
- · MESON's proof reconstruction needs modification for the use of lemmas

Very secure HOL Light certification of leanCoP proofs

Learning: MaLeCoP



FEMaLeCoP: Advice Overview and Used Features

 \cdot Advise the:

- selection of clause for every tableau extension step
- · Proof state: weighted vector of symbols (or terms)
 - $\cdot\,$ extracted from all the literals on the active path
 - · Frequency-based weighting (IDF)
 - · Simple decay factor (using maximum)
- · Consistent clausification
 - formula ?[X]: p(X) becomes p('skolem(?[A]:p(A),1)')
- · Advice using custom sparse naive Bayes
 - $\cdot\,$ association of the features of the proof states
 - \cdot with contrapositives used for the successful extension steps

FEMaLeCoP: Data Collection and Indexing

- $\cdot\,$ Slight extension of the saved proofs
 - Training Data: pairs (path, used extension step)
- External Data Indexing (incremental)
 - te_num: number of training examples
 - · pf_no: hashtable from features to number of occurrences $\in \mathbb{Q}$
 - · cn_no: hashtable from contrapositives to numbers of occurrences
 - cn_pf_no: hashtable of maps of cn/pf co-occurrences
- · Problem Specific Data
 - · Upon start FEMaLeCoP reads
 - only current-problem relevant parts of the training data
 - \cdot cn_no and cn_pf_no filtered by contrapositives in lit matrix
 - $\cdot \ \text{pf_no and cn_pf_no filtered}$ by possible features in the problem

Naive Bayes

If more than one possible extension step

Estimate relevance of each contrapositive cn by

$$\sigma_1 \ln t + \sum_{f \in (\overline{f} \cap \overline{s})} i(f) \ln rac{\sigma_2 s(f)}{t} + \sigma_3 \sum_{f \in (\overline{f} - \overline{s})} i(f) + \sigma_4 \sum_{f \in (\overline{s} - \overline{f})} i(f) \ln(1 - rac{s(f)}{t})$$

where

- \cdot \overline{f} are the features of the path
- $\cdot \ \overline{s}$ are the features that co-occurred with cn
- $\cdot \ t = cn_no(cn)$
- $\cdot \ s = cn_fp_no(cn)$
- \cdot *i* is the IDF
- \cdot σ_* are experimentally chosen parameters

Inference speed ...

Inference speed ... drops to about 40%, but:

Prover	Proved (%)	
OCaml-leanCoP	574 (27.6%)	
FEMaLeCoP	635 (30.6%)	
together	664 (32.0%)	
(MDTD bught problems 60 g)		

(MPTP bushy problems, 60 s)

- · OCaml version of leanCoP
 - outperforms Metis and MESON, sometimes very significantly
- · Reconstruction of leanCoP proofs in HOL Light
 - · Useful as reconstruction component of HOL(y)Hammer
 - · Certification of leanCoP TPTP proofs
- · Learning
 - Three levels of indexing
 - Proper integration
- · Future Work:
 - Strategies, more evaluation, more HOL-based ITPs
 - Intuitionistic version
 - More learning algorithms