TicTacToe in HOL4

Thibault Gauthier

University of Innsbruck

How can we improve automation in ITP?

- connect to strong external provers: E-prover and select relevant lemmas: HolyHammer SledgeHammer MizAR.
- improve current tactics in our ITP.

Ultimate meta-tactic: select relevant tactics and apply them.

Related works.

Recording tactics.

Learning.

Tactic-based search.

Evaluating.

Tactician: HOL Light

Author: Mark Adams

Goal:

$$(\forall x. \ x = x) \land (\forall y. \ y = y)$$

Tactic: REPEAT CONJ_TAC THEN GEN_TAC THEN REFL_TAC

```
Interactive proof:
e (REPEAT CONJ_TAC)
(*** Branch 1 ***)
e (GEN_TAC)
e (REFL_TAC);;
(*** Branch 2 ***)
e (GEN_TAC);;
e (REFL TAC);;
```

Authors: E.Komendantskaya and J.Heras

Goal: refractoring libraries by discovering similarity between proofs Features (captured at each proof step):

- 1. Names and number of tactics used in one command line.
- 2. Types of the tactic arguments.
- 3. Relation of the tactic arguments to the hypotheses or lemmas.
- 4. Three top symbols in the term-tree of the current subgoal.
- 5. Number of subgoals each tactic command-line generates.

Unsupervised learning: clustering algorithm.

Modifying tactical proofs so that they record their tactics.

Tactic: REPEAT CONJ_TAC THEN GEN_TAC THEN REFL_TAC

Wrapping: record (REPEAT CONJ_TAC, "REPEAT CONJ_TAC") THEN record (GEN_TAC, "GEN_TAC") THEN record (REFL_TAC, "REFL_TAC")

Generalizing: record (REPEAT CONJ_TAC, "Tactical.REPEAT Tactic.CONJ_TAC") THEN record (GEN_TAC, "Tactic.GEN_TAC") THEN record (REFL_TAC, "Tactic.REFL_TAC") The tactic ARW is generalized as:

(let open simpLib in (let val ARW = BasicProvers.RW_TAC (let val arith_ss = boolSimps.bool_ss ++ numSimps.ARITH_ss in arith_ss end) in ARW end) [] end)

to be readable from its string representation anywhere in the program.

Features (captured at each tactical step):

- 1. top goal: subterms, types.
- 2. current subgoal: subterms, types, variables, logical structure.
- 3. Time taken by the tactic.
- 4. To dol: relation of the tactic arguments to the current goal.

Before the search:

• Pre-selection of 500 tactics: k-NN with top-goal features.

During the search:

 Re-ordering by k-NN of the feature vectors based on the current subgoal features.

Searching

New goals:

• goal₀: $(\forall x. x = x) \land (\forall y. y = y)$

Proof state:

goal₀: [(CONJ_TAC,0.9),(STRIP_TAC,0.5),...]

New goals: CONJ_TAC

- goal₁: $(\forall x. x = x)$
- goal₂: $(\forall y. y = y)$

Proof state:

- goal₀: [(STRIP_TAC,0.5),...]
- $goal_1$: [(REFL_TAC,0.6),...], pending: $goal_2$

Early results

Settings:

- Tactic time out: 0.02 seconds
- Search time out: 5 seconds

Results:

- 1974 proofs of 7951 theorem.
- a proof was constituted of 37 tactics
- 100 percent reconstruction rate.

Typical search:

- infstep : 60-200
- nodes : 25-40
- maxdepth: 4-7

Bugs (or special parameters): subterms features

Example in gcdTheory

GCD_ADD_L:

$$\forall a \ b. \ gcd \ (a+b) \ a = gcd \ a \ b$$

Human proof:

PROVE_TAC[GCD_SYM,GCD_ADD_R]

TicTacToe proof:

- ARW_TAC
- THEN MATCH_MP_TAC (SPECL [a, a + b] IS_GCD_UNIQUE)
- THEN ARW [...] IS_GCD_MINUS_R
- THEN PROVE_TAC [GCD_IS_GCD, IS_GCD_UNIQUE, IS_GCD_SYM]

HolyHammer: GCD_SYM GCD_ADD_R

EXISTS_TAKE:

$\forall m \ l. \ m \leq LENGTH \ l \Rightarrow \forall P. \ EXISTS \ P \ (TAKE \ m \ l) \Rightarrow$

EXISTS P I

Human proof:

- REPEAT GEN_TAC THEN DISCH_TAC
- THEN IMP_RES_THEN SUBST1_TAC TAKE_SEG
- THEN MATCH_MP_TAC EXISTS_SEG
- THEN ASM_REWRITE_TAC [ADD_0]

TicTacToe proof:

- REPEAT numLib.INDUCT_TAC
- THEN Cases_on 1 THEN ...
- THEN REPEAT STRIP_TAC THEN ...

HolyHammer: EXISTS_TAKE_IMP

FCOMM_FOLDL_FLAT:

 $\forall f \ g. \ FCOMM \ f \ g \Rightarrow \forall e. \ RIGHT_ID \ g \ e \Rightarrow$

 \forall I. FOLDL f e (FLAT I) = FOLDL g e (MAP (FOLDL f e) I)'

TicTacToe proof:

- GEN_TAC THEN GEN_TAC THEN ... THEN DISCH_TAC THEN
- SNOC_INDUCT_TAC THENL

 $goal_1$:

- ASM_REWRITE_TAC [FLAT_SNOC, MAP_SNOC, MAP, FLAT, FOLDL_SNOC]
- THEN IMP_RES_TAC FCOMM_FOLDL_APPEND
- THEN ASM_REWRITE_TAC [APPEND_NIL, APPEND_SNOC, FOLDL_SNOC, FOLDL],

goal₂: same as goal₁ except last step is ASM_REWRITE_TAC []

Holyhammer: No proof found with Eprover (BliStr) in 30s.

Improvements: Is 5 seconds enough?

Figure 1: Number of proofs found (y axis) in a fixed time (x axis)

- Caching previous predictions and tactic applications
- Penalty on the depth or/and width of the subgoals.

- Learning from previously discovered proofs.
- Relabelization of feature vectors. Clustering ?.
 - Improve orthogonalities of the tactics.

Theorems and terms (arguments of tactics) have also features.

Example 1: REWRITE_TAC *theorem_list*

- REWRITE_TAC [FLAT_SNOC, MAP_SNOC]
- FOLDL_SNOC is close to the current goal.
- REWRITE_TAC [FLAT_SNOC, MAP_SNOC, FOLDL_SNOC]

Example 2: Cases_on variable_name

- Cases_on y.
- y doesn't appear in the goal but x.
- Cases_on x.