
Lifted Relational

Neural Networks

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny

& Ondrej Kuzelka

Outline

• Motivation

• From Neural Nets point of view (possibly)

• From Markov Logic point of view

• What are Lifted Relational Neural Networks

• Short version

• Long version (possibly)

• Learning latent concepts with LRNNs

2

LRNN Motivation
from Neural Networks’ POV

3

Motivation (NN POV)

• How to learn with relational or graph-structured data?

• Examples : molecules (networks, trees, etc.)

• How to represent data samples?

• Sets of vertices & edges, relational logic clauses

• Isomorphic samples should be treated the same!

• How to feed them into a classifier, a neural network?

4

Propositionalization

• Idea : turn arbitrary graph into a fixed-size vector

• Through a predefined aggregation mapping

• Powerful, yet need to predefine all useful patterns

5

Auxiliary concepts

• There may be useful sub-structures present

• For instance, halogen groups in a molecule

(mutagenicity) classification problem

• e.g., C-Br, C-Cl, C-F may be indicative

• i.e., there is a useful pattern C-(halogen atom)

• We can predefine these in the feature-vector

6

Latent predicate invention

• What if we do not know any of the useful sub-structures of
the problem in advance?

• e.g., we do not know there is something like halogens or
other indicative group of atoms

 We may design anonymous predicates for these patterns

• And learn these in a way such that they are useful in
different contexts (rules) (Muggleton,1988)

 Neural learning of latent (non ground) patterns

• This is beyond the scope of propositionalization

7

LRNNs

• We propose a framework avoiding the
aforementioned limitation of propositionalization

• Lifted Relation Neural Networks (LRNNs)

• Inspiration:

• Lifted (templated) graphical models:
Markov Logic Networks(Richardson, Domingos,2005), Bayesian
Logic Programs(Kersting, De Raedt,2000)

• Neural-symbolic approaches:
KBANN(Towel, Shavlik,1994), CILP(Franca, Zaverucha, Garcez,1999)

8

LRNN Motivation
from Markov Logic POV

9

Motivation (Markov Logic POV)

• How to learn with relational or graph-structured data in
the presence of uncertainty?

 Lifted graphical models, e.g. Markov Logic

• How to efficiently learn latent concepts?

 Neural Networks (propositional concepts)

 How about latent relational concept learning?

 Lifted Relational Neural Networks

10

What is LRNN?
short version

11

What is LRNN? (short version)

• Syntactically: Set of weighted first-order Horn clauses

• 0.5 : water :- bondOH(X,Y)

• 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

• LRNN encoding looks familiar - like a weighted Prolog program…

• Semantically: Template for neural network construction

 We turn the template’s Herbrand models into NNs as follows..

12

Network Construction

1. Every ground proposition (atom) which can be derived * from

a given LRNN model corresponds to an atom neuron

2. Every ground rule h(b1, …, bk) such that (b1, …, bk) can be

derived * from a given LRNN corresponds to a rule neuron

3. To aggregate different groundings derived with the same

rule’s ground head {h(b1
1, …, b1

k), …, h(bn
1, …, bn

k)}

there is an aggregation neuron

* meaning it is present in the least Herbrand model

13

Putting it all together…

14

Weight Learning

• LRNN model := grounding of {sample, template} clauses

 Different samples result in different ground networks

 This induces weight sharing across ground networks
as their neurons are tied to the same template rules

• Different aggregation functions are used as neurons’
activations so as to reflect the (fuzzy) logic of disjunction,
conjunction, and different forms of aggregative
reasoning over relational patterns

• Stochastic Gradient Descend can be used for training

15

What is LRNN?
Long version

16

Data representation

• No propositionalization or feature vector transformation

• Similarly to LRNNs, we represent samples simply as raw
sets of corresponding facts (typically ground unit clauses)

• A simple set union {} of a LRNN template with a relational
sample can thus be though of simply as another LRNN

17

LRNN construction

• LRNN := union of a sample and template clauses

Different samples result in different LRNNs

• Template remains the same

• We introduce building blocks of LRNN construction,

these are 3 different types of neurons :

atom neurons, rule neurons, aggregation neurons

18

Atom Neurons

• Every ground proposition (atom) which can be derived* from a
given LRNN corresponds to an atom neuron

• Example LRNN:

• Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y).

• Sample : H(h1), H(h2), O(o1), bond(h1,o1), bond(h2,o1)

 Set of all atom neurons:

• { NH(h1), NH(h2), NO(o1) , Nbond(h1,o1) , Nbond(h2,o1),
NbondOH(h1,o1),NbondOH(h2,o1) }

(* Meaning present in the least Herbrand model of it)

19

Atom Neurons

• Every ground proposition (atom) which can be derived* from a

given LRNN corresponds to an atom neuron

• Example LRNN:

• Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y).

• Sample : H(h1), H(h2), O(o1), bond(h1,o1), bond(h2,o1)

 Set of all atom neurons:

• l

20

Rule neurons

• Every ground rule h  (b1, …, bk) such that (b1, …, bk) can

be derived* from a given LRNN corresponds to a rule neuron

• Example LRNN:

• Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

• Sample : H(h1), H(h2), O(o1), bond(h1,o1), bond(h2,o1)

 Set of all rule neurons:

NbondOH(h1,o1) H(h1), O(o1), bond(h1,o1) , NbondOH(h2,o1) H(h2), O(o1), bond(h2,o1)

(*Meaning the atoms are true in the least Herbrand model)

21

Rule neurons
• Every ground rule h  (b1, …, bk) such that (b1, …, bk) can

be derived* from a given LRNN corresponds to a rule neuron

• Example LRNN:

• Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

• Sample : H(h1), H(h2), O(o1), bond(h1,o1), bond(h2,o1)

•  Set of all rule neurons:

22

Rule neuron activation

• Rule neuron basically represents conjunctive If-Then rule

• This should be reflected in its activation function

•  Rule neuron has high output if and only if all the input

atom neurons (rule’s body) have high outputs

• Fuzzy logic inspiration :

23

Aggregation neurons

• We need to aggregate different groundings of the same non-ground
rule having the same ground literal in the head. For each such
aggregation there is an aggregation neuron.

• Example LRNN:

• Template : 1.0 : hasOH :- bondOH(X,Y)
1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

• Sample : H(h1), H(h2), O(o1), bond(h1,o1), bond(h2,o1)

• Set of different ground rules for hasOH :- bondOH(X,Y) corresponds to neurons:

• NhasOH bondOH(h1,o1) , NhasOH bondOH(h2,o1)

• Aggregation neuron NhasOH bondOH(X,Y) aggregates over these

24

Aggregation functions

• Different aggregation functions might be used for
different logic of aggregation neurons

• MAX – corresponds to “best pattern” matching

• Possibilities in other contexts include, e.g., AVG

25

Atom neuron inputs

• There may be multiple weighted rules with the same ground head,
yet with different weights

• Example template:

• 1.0 : Group1 :- hasOH

• 0.2 : Group1 :- hasHCl

• I.e. we end up with two different aggregation neurons with different
weights:

• 1.0 : NGroup1 :- hasOH and 0.2 : NGroup1 :- hasHCl

• These finally form the inputs of atom neuron NGroup1

26

Atom neuron activation

• Combining different rules implying the same

atom naturally corresponds to disjunction

• Atom neuron output should be high if and only if

at least one of the rule neurons has high output

• Fuzzy logic inspiration :

27

Putting it all together…

28

Weight Learning

• The constructed ground LRNN can be thought of as

a regular neural network with shared weights

• The shared weights come from grounding of same

template’s clause and exploit sample regularities

• Similarly to convolutional neural networks this does

not pose any problem to weight learning

• Stochastic Gradient Descend (SGD) with mild

adaptions can be efficiently used for training

29

Experiments

30

Experiment template
0.0 atomGroup1(X) :- o(X).

0.0 atomGroup1(X) :- cl(X).

....

0.0 atomGroup3(X) :- cl(X).

….

0.0 bondGroup3(X) :- 2=(X).

….

graphlet0 :- atomGroup2(X), bond(X,Y,B1),

bondGroup1(B1), atomGroup3(Y)…

….

0.0 class1 :- graphlet0.

….

0.0 class1 :- graphlet242.
31

Samples

32

Results

33

Where was latent

predicate Invention?
• Different modeling concepts exploiting predicate invention

• Particularly, implicit soft clustering:

• Other concepts include soft-matching, hypergraph approximation,
relational autoencoders,…

34

Learning Predictive Categories Using

Lifted Relational Neural Networks

Gustav Sourek1 , Suresh Manandhar2 , Filip Zelezny1 ,

Steven Schockaert3 , and Ondrej Kuzelka3

1) Czech Technical University in Prague, Czech Republic

{souregus, zelezny}@fel.cvut.cz

2) Department of Computer Science, University of York, UK

suresh.manandhar@york.ac.uk

3) School of CS & Informatics, Cardiff University, UK

{SchockaertS1, KuzelkaO}@cardiff.ac.uk

36

Learning Predictive Categories with LRNNs

Learning Predictive Categories

We consider a following (learning) scenario with latent categories:

1. Entities

• a) Have properties, b) Belong to categories

 Categories largely determine belonging entities’ properties

2. Properties

• a) Belong to entities, b) Belong to categories

 Categories largely determine entities satisfying a property

37

1. Given : a set of entities and corresponding lists of
their properties

2. Assumption : there exists some latent hierarchy of
categories that are predictive of their corresponding
object’s properties

• The hierarchy should allow for property inheritance

• Similarly we induce latent hierarchy on properties

3. Goal : Learn suitable category structures from data

38

Learning Predictive Categories

Encoding in LRNN

• Given input samples : {1/0 HasProperty(e, p)

• Membership to categories : wec : IsA(e, c)

• Category hierarchy : wc1c2 : IsA(c1, c2)

• Category properties : wcecp : HasProperty(ce, cp)

• Transitivity : wisa : IsA(A, C) ← IsA(A, B),IsA(B, C)

• Categories determine their entities’ properties :
w’cecp : HasProperty(A, B) ←

IsA(A, ce), IsA(B, cp), HasProperty(ce, cp)

39

Learning Setting

• We minimize MSE of the query atom neuron outputs
and their targets {1/0 HasProperty(e, p)} via SGD

• The activation functions used were

• Conjunction ∧(b1, . . . , bk) = sigm (σi=1
𝑘 bi − k + b0)

• Disjunction ∨(b1, . . . , bk) = sigm (σi=1
𝑘 bi + b0)

• Aggregation ∗(b1, . . . , bm) = max i bi

• We set up 2 level hierarchy with [3, 2] hidden
categories for both objects and properties

40

Evaluation

• Animals dataset (https://alchemy.cs.washington.edu/data/animals)

• 50 animals + 65 properties (e.g., large, smelly, strong,…)

• Predictive ability : AUC PR 0.8, AUC ROC 0.86

• Same as with second order Markov Logic Networks,
reported in (Statistical Predicate Invention, Kok and Domingos, 2007)

• Which is related to the introduced model, while jointly
clustering objects and relations

41

Embeddings of entities

42

Embeddings of properties

43

Outlook

• We have learned implicit similarity measure via latent
category membership degrees

• We might also incorporate explicit similarities as
wl : HasProperty(A, B)

← HasProperty(C, B), Similar(A, C, l)

• Where l denotes some level of similarity, e.g. based on
externally obtained embeddings

• With that we might emulate 1-NN or kernel regression

• Also whole triples of (subject, predicate, object) might be
considered to learn soft categories of predicates, too

44

Conclusions

• LRNNs are a flexible framework to easily encode
non-trivial SRL scenarios

• e.g., a joint learning of predictive categories of
entities and their properties

• More complicated settings might be easily reached
with just mild extensions of the template

• e.g., semi-supervised learning, embeddings, etc.

• We plan for thorough comparison with MLNs and
incorporation of LRNNs into NLP tasks pipelines

45

General conclusions

• LRNNs may be thought of as a neural analogy to lifted (templated)
graphical models (e.g., Markov Logic Networks)

• Both are template languages for defining and weight tying in the
corresponding ground models

• Benefits

• Latent (deep) relational concepts, Flexible templates (e.g.,
convolutional NN), Explicit variable binding

• Future work

• Different modeling concepts, recurrent NNs, ASP, optimization,
Structure learning inspired by meta-interpretive learning

46

Thank you!

See “Lifted Relational Neural Networks” at arXiv.org for more details

47

Convolutional NN

48

