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LRNN Motivation

from Neural Networks’ POV



Motivation aeoy

How to learn with relational or graph-structured data?
Examples : molecules (networks, trees, etc.)

How to represent data samples?

.- Sets of vertices & edges, relational logic clauses
Isomorphic samples should be treated the same!

How to feed them into a classifier, a neural network?



Propositionalization

- |dea : turn arbitrary graph into a fixed-size vector

- Through a predefined aggregation mapping

[e] [1] [2] [3] [4]

- Powerful, yet need to predefine all useful patterns
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Auxiliary concepts

- There may be useful sub-structures present

- For instance, halogen groups in a molecule
(mutagenicity) classification problem

- e.d., C-Br, C-CI, C-F may be indicative
- I.e., there Is a useful pattern C-(halogen atom)

- We can predefine these In the feature-vector
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Latent predicate invention

- What if we do not know any of the useful sub-structures of
the problem in advance?

e.g., we do not know there is something like halogens or
other indicative group of atoms

- We may design anonymous predicates for these patterns

- And learn these Iin a way such that they are useful in
different contexts (rules) (Muggleton,1988)

- Neural learning of latent (non ground) patterns

- This is beyond the scope of propositionalization
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LRNNS

- We propose a framework avoiding the
aforementioned limitation of propositionalization

Lifted Relation Neural Networks (LRNNS)
Inspiration:

Lifted (templated) graphical models: |
Markov LOgiC NetWOrkS(Richardson, Domingos,2005), BayeS|an
Logic Programskersting, be Raedt,2000)

Neural-symbolic approaches:
KBAN N(Towel, Shavlik,1994), C| LP(Franca, Zaverucha, Garcez,1999)
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LRNN Motivation

from Markov Logic POV



M Ot|Vat| O n (Markov Logic POV)

How to learn with relational or graph-structured data In
the presence of uncertainty?

» Lifted graphical models, e.g. Markov Logic
How to efficiently learn latent concepts?
» Neural Networks (propositional concepts)

» How about latent relational concept learning?

> Lifted Relational Neural Networks
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What iIs LRNN?

short version



Wh at |S L R N N ’7 (short version)

Syntactically: Set of weighted first-order Horn clauses
- 0.5 : water :- bondOH(X,Y)
. 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

LRNN encoding looks familiar - like a weighted Prolog program...

Semantically: Template for neural network construction

» We turn the template’s Herbrand models into NNs as follows..
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1.

Network Construction

Every ground proposition (atom) which can be derived * from
a given LRNN model corresponds to an atom neuron

Every ground rule h<&(b,, ..., b)) such that (b,, ..., b,) can be
derived * from a given LRNN corresponds to a rule neuron

To aggregate different groundings derived with the same
rule’s ground head {h<(bY,, ..., bY), ..., h&(by, ..., D)}
there Is an aggregation neuron

meaning it is present in the least Herbrand model
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Putting it all together...

hasOH <- bondOHI(X.,Y)

hasOH <-bondOH(h1,01) hasOH <-bondOH(h2,01)

bondOH(h1,01) <-H(h1),0(0l1)bond(hl,ol) bondOH(h2,01) <- H(h2),0(01)bond(h2,01)
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Weignht Learning

LRNN model ;= grounding of {sample, template} clauses
» Different samples result in different ground networks

» This Iinduces weight sharing across ground networks
as their neurons are tied to the same template rules

Different aggregation functions are used as neurons’
activations so as to reflect the (fuzzy) logic of disjunction,
conjunction, and different forms of aggregative
reasoning over relational patterns

Stochastic Gradient Descend can be used for training

15



What iIs LRNN?

Long version



Data representation

No propositionalization or feature vector transformation

Similarly to LRNNSs, we represent samples simply as raw
sets of corresponding facts (typically ground unit clauses)

[[(//l)

bond(h!. h?)

A simple set union {} of a LRNN template with a relational
sample can thus be though of simply as another LRNN
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. RNIN construction

- LRNN :=union of a sample and template clauses

-> Different samples result in different LRNNs

- Template remains the same

- We Iintroduce building blocks of LRNN construction,

these are 3 different types of neurons :
atom neurons, rule neurons, aggregation neurons
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Atom Neurons

- Every ground proposition (atom) which can be derived* from a
given LRNN corresponds to an atom neuron

- Example LRNN:
- Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y).
. Sample : H(h1), H(h2), O(ol), bond(h1,01), bond(h2,01)

- Set of all atom neurons:

* { I\lH(hl)’ |\IH(hZ)’ |\IO(ol) , Nboni(hl,ol) ’ Nbond(hz,ol)’
bondOH(h1,01)'" YbondOH(h2,01)

(* Meaning present in the least Herbrand model of it)
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Atom Neurons

Every ground proposition (atom) which can be derived* from a
given LRNN corresponds to an atom neuron

Example LRNN:
Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y).

Sample : H(h1), H(h2), O(ol), bond(h1,01), bond(h2,01)

- Set of all atom neurons:
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Rule neurons

Every ground rule h < (b, ..., b,) such that (b4, ..., b,) can
be derived* from a given LRNN corresponds to a rule neuron

Example LRNN:
Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

Sample : H(h1), H(h2), O(ol), bond(hl,01), bond(h2,01)
- Set of all rule neurons:
NbondOH(hl,ol)é H(hl), O(ol), bond(hl,01), NbondOH(hZ,ol)é H(h2), O(ol), bond(h2,01)

(*Meaning the atoms are true In the least Herbrand model)
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Rule neurons

- Every ground rule h €« (by, ..., b,) such that (b,, ..., b,) can
be derived* from a given LRNN corresponds to a rule neuron

Example LRNN:
Template : 1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

Sample : H(h1), H(h2), O(0l), bond(h1,01), bond(h2,01)

. —> Set of all rule neurons:

bondOH(h1,01) <- H(h1),0(01),bond(h1,01) bondOH(h2,01) <- H(h2),0(01),bond(h2,01)

. .
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Rule neuron activation

- Rule neuron basically represents conjunctive If-Then rule
- This should be reflected in its activation function

- =2 Rule neuron has high output if and only if all the input
atom neurons (rule’s body) have high outputs

- Fuzzy logic inspiration :




Aggregation neurons

We need to aggregate different groundings of the same non-ground
rule having the same ground literal in the head. For each such
aggregation there is an aggregation neuron.

Example LRNN:

Template : 1.0 : hasOH :- bondOH(X,Y)
1.0 : bondOH(X,Y) :- H(X), O(Y), bond(X,Y)

Sample : H(h1l), H(h2), O(ol), bond(h1l,01), bond(h2,01)
Set of different ground rules for hasOH :- bondOH(X,Y) corresponds to neurons:

NhasOH < bondOH(h1,01) I\IhasOH < bondOH(h2,01)

Aggregation neuron N, ..o « pondon(x v) 20gregates over these
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Aggregation functions

Different aggregation functions might be used for
different logic of aggregation neurons

MAX — corresponds to “best pattern” matching

hasOH <- bondOH(X,Y)
1

™~

hasOH <- bondOH(h2,01)

Possibllities In other contexts include, e.qg., AVG
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Atom neuron Inputs

There may be multiple weighted rules with the same ground head,
yet with different weights

Example template:

1.0 : Groupl :- hasOH

0.2 : Groupl :- hasHCI

l.e. we end up with two different aggregation neurons with different
weights:

1.0: NGroupl .- hasOH and 0.2: NGroupl .- hasHCI

- These finally form the inputs of atom neuron Ng 1
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Atom neuron activation

Combining different rules implying the same
atom naturally corresponds to disjunction

Atom neuron output should be high if and only If
at least one of the rule neurons has high output

Fuzzy logic inspiration :
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Putting it all together...

hasOH <- bondOHI(X.,Y)

hasOH <-bondOH(h1,01) hasOH <-bondOH(h2,01)

bondOH(h1,01) <-H(h1),0(0l1)bond(hl,ol) bondOH(h2,01) <- H(h2),0(01)bond(h2,01)
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Weignht Learning

- The constructed ground LRNN can be thought of as

a regular neural network with shared weights

- The shared weights come from grounding of same

template’s clause and exploit sample regularities

- Similarly to convolutional neural networks this does
not pose any problem to weight learning

. Stochastic Gradient Descend (SGD) with mild

adaptions can be efficiently used for training

PAS



Experiments



Experiment template

0.0 atomGroup1(X) :- o(X).
0.0 atomGroupl(X) :- cl(X).

0.0 atomGroup3(X) :- cl(X).
0.0 bondGroup3(X) :- 2=(X).

graphletO :- atomGroup2(X), bond(X,Y,B1),
bondGroup1(B1), atomGroup3(Y)...

0.0 classl :- graphletO.

0.0 classl :- graphlet242.
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Samples
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Results




Where was latent
predicate Invention?

Different modeling concepts exploiting predicate invention

Particularly, implicit soft clustering:
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Other concepts include soft-matching, hypergraph approximation,
relational autoencoders,...
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Learning Predictive Categories with LRNNs
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Learning Predictive Categories

We consider a following (learning) scenario with latent categories:
1. Entities

a) Have properties, b) Belong to categories

» Categories largely determine belonging entities’ properties
2. Properties

a) Belong to entities, b) Belong to categories

» Categories largely determine entities satisfying a property
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Learning Predictive Categories

1. Given : a set of entities and corresponding lists of
their properties

2. Assumption : there exists some latent hierarchy of
categories that are predictive of their corresponding
object’s properties

- The hierarchy should allow for property inheritance
- Similarly we induce latent hierarchy on properties

3. Goal : Learn suitable category structures from data
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Encoding In LRNN

- Given input samples : {1/0 HasProperty(e, p)

- Membership to categories : w,. : ISA(e, c)
- Category hierarchy : w,,., : ISA(c4, C,)
- Category properties : w,.., : HasProperty(c,, C)

cecp -

- Transitivity : w., : ISA(A, C) «— ISA(A, B),ISA(B, C)

. Categories determine their entities’ properties :

Wseep - HasProperty(A, B) «
ISA(A, c,), ISA(B, c,), HasProperty(c,, C,)
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Learning Setting

- We minimize MSE of the query atom neuron outputs
and their targets {1/0 HasProperty(e, p)} via SGD

. The activation functions used were

. Conjunction Agy . iy =sigm (Xl b, = k + by )

Disjunction Vi, o= sigm (Xi, b; + by )

- Aggregation g,

- We set up 2 level hierarchy with [3, 2] hidden
categories for both objects and properties
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Evaluation

- Animals dataset (https://alchemy.cs.washington.edu/data/animals)

- 50 animals + 65 properties (e.g., large, smelly, strong,...)

Predictive ability : AUC PR 0.8, AUC ROC 0.86

Same as with second order Markov Logic Networks,
reported IN (Statistical Predicate Invention, Kok and Domingos, 2007)

- Which is related to the introduced model, while jointly
clustering objects and relations
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Embeddings of entities
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Embeddings of properties
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Outlook

We have learned implicit similarity measure via latent
category membership degrees

We might also incorporate explicit similarities as
: HasProperty(A, B)
— HasProperty(C, B), Similar(A, C, I)

Where | denotes some level of similarity, e.g. based on
externally obtained embeddings

With that we might emulate 1-NN or kernel regression

Also whole triples of (subject, predicate, object) might be
considered to learn soft categories of predicates, too
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Conclusions

- LRNNSs are a flexible framework to easily encode

non-trivial SRL scenarios

- €.g., a Joint learning of predictive categories of
entities and their properties

- More complicated settings might be easily reached

with just mild extensions of the template

. e.g., semi-supervised learning, embeddings, etc.

- We plan for thorough comparison with MLNs and

iIncorporation of LRNNSs into NLP tasks pipelines
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General conclusions

LRNNs may be thought of as a neural analogy to lifted (templated)
graphical models (e.g., Markov Logic Networks)

Both are template languages for defining and weight tying in the
corresponding ground models

Benefits

Latent (deep) relational concepts, Flexible templates (e.g.,
convolutional NN), Explicit variable binding

Future work

Different modeling concepts, recurrent NNs, ASP, optimization,
Structure learning inspired by meta-interpretive Iearnmg
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Thank you!

See “Lifted Relational Neural Networks”™ at arXiv.org for more details
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Convolutional NN
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