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Context: First-Order Theorem Proving

I Theorem proving in first-order logic (with equality)

I Quantifiers (∀,∃)
I Standard connectives (¬,∧,∨,→, . . .)
I Predicate symbols and function symbols are free
I Exception: Equality is a congruence relation

I Standard approach: proof by contradiction

Ax |= C
iff

Ax ∪ {¬C} is unsatisfiable

I Clausification turns full FOF into equisatisfiable clause set

Theorem proving is reduced to
showing inconsistency of clause sets!
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Herbrand’s Theorem

Herbrand’s Theorem (modern version)

“A set of first-order clauses is unsatisfiable, if and only
if it has a finite set of ground instances that is propo-
sitionally unsatisfiable.”

I If there is a model, there is a Herbrand model

I Universe consists of ground terms
I Function symbols are interpreted as constructors
I Extended to equational logic (Herbrand equality model)

I Contraposition: If there is no ground term model, there is no model

I Theoretical foundation of most first-order calculi
I Practical application?
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Example

Consider the following set C of clauses:

1. p(a)

2. ¬p(X ) ∨ p(f (X ))

3. ¬p(f (Y ))

C ′ is a set of ground instances of clauses from C :

1. p(a)

2. ¬p(a) ∨ p(f (a))

3. ¬p(f (a))

C ′ is propositionally unsatisfiable, hence C is unsatisfiable
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Enumerate and Check

I Davis&Putnam 1960: Direct application of Herbrand’s theorem

I Enumerate ground instances
I Periodically check ground clause set via a specialised form of ground

resolution
I A Computing Procedure for Quantification Theory

I Theoretically sound and complete, but little practical success

I Resolution is not very strong on propositional logic
I Uncontrolled enumeration generates too many irrelevant instances
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A Split in the Road

I Davis/Logemann/Loveland (1962): splitting and unit propagation

I Search for propositional models
I Propagate atom values forced by unit clauses
I If no units, case distinction by splitting
I Backtracking on fail
I CDCL: DPLL+clause learning+non-chronological backtracking

Modern CDCL solvers are unreasonably successful in practice

I Robinson (1965): Generate instances via unification

I Instantiation only to make conflicting constraints explicit (most
general unifier)

I Only instantiate as lightly as possible (most general unifier)
I Integrated into generating inferences
I Saturation/Proof completed by derivation of empty clause

Unification/Saturation: Foundation of most state-of-the-art
FO-provers
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DPLL and Resolution

DPLL on C’:

1. p(a)

2. ¬p(a) ∨ p(f (a))

3. ¬p(f (a))

4. Propagate 1: p(f (a)) (from 2)

5. Propagate 4: � (from 3)

No decision/split, hence no
backtracking: C ′ is unsatisfiable

But:
Instantiations provided externally!
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DPLL and Resolution

DPLL on C’:

1. p(a)
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Unification-based saturation needs:

I Systematic inference control

I Fair inference strategy

I Good heuristic guidance

7



Saturation: Implementation and Observation

U 
(unprocessed clauses)

Gene-
rate

Cheap 
Simplify

Simplify

g

P 
(processed clauses)

g =☐ 
?

Simpli-
fiable?
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P 
(processed clauses)

g =☐ 
?

Simpli-
fiable?

U 
(unprocessed clauses)

• Fully processed 
• Direct consequences computed 
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• Instantiated 
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The Best of Both Worlds

I Combine saturation and CDCL

I Saturation creates instances in controlled manner
I CDCL uncovers hidden conflicts

I Implemention

I Standard given-clause saturation algorithm (E)
I Periodic grounding and SAT check (PicoSAT)

Saturation Loop
Propositional 
 Encoder/ 
Decoder

CDCL 
Engine

  E  PicoSAT
FO clause set

FO proof

Propositional 
clause set

Propositional 
derivation
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The Best of Both Worlds
while U 6= {}

if prop trigger(U,P)
if prop unsat check(U,P)

SUCCESS, Proof found
g = extract best(U)
g = simplify(g ,P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g ,P)
T ′ = {}
foreach c ∈ T

c = cheap simplify(c ,P)
if c is not trivial

T ′ = T ′ ∪ {c}
U = U ∪ T ′

SUCCESS, original U is satisfiable 10



Experimental Setup

I E 2.1 with SAT extensions

I 16048 TPTP 7.0.0 CNF and FOF problems

I Different base strategies

I Different grounding constants

I 300 second overall time limit on StarExec cluster

I 3 seconds per attempt for PicoSAT
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Core results

I Basic result: About 1% more proofs than plain saturation
I About 10% success on hard problems

I Saturation alone solves ca. 90% of problems before first SAT check
I PicoSAT contributes about 10% of proofs in cases where it is used

I SAT problem properties

I Large (median 160 000 clauses)
I Purity reduction removes ca. 90% of clauses
I 95% easily satisfiable, 2.5% unsat, 2.5% timeout
I Unsatisfiable core is small (median 4 clauses)
I Successes for hard SAT and near-SAT problems

Success rate not overwhelming, but promising
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SAT Proof Properties

Statistic Min 1st q. Median 3rd q. Max
Clauses 3825 65972 160999 296951 2107682
Non-pure 2 1297 10478 36739 861260
Unsat core 2 3 4 10 1705

I “Unsatisfiable core is small (median 4 clauses)”

I If only the saturation engine could magically pick the right clauses. . .
I Further highlights the potential for good search heuristics for

first-order reasoning!

I . . . but saturation will not beat CDCL on hard SAT problems

I Orders of magnitude advantage in speed
I Orders of magnitude davantage in memory
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Heuristic choice points

I How often do we ground?/What is prop trigger()?

I Every n iterations of the main loop
I Every n newly generated unprocessed clauses
I Every time the number of terms inserted into the term bank for the

first time exceeds n ∗ 2k for k ∈ N
I Which constants do we for instantiation?

I Fresh constant
I First constant
I Most/least frequent constant in axioms/conjectures (various

combinations)

I How long do we give the sat solver?

I Limit on number of decision literals processed
I Unlimited
I (time limit - not implemented, I don’t like the non-determinism)
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Related Work (1)

I Clause Linking (Plaisted et al):

I Simply create (“linking”) instances via unification of clause pairs
I Periodically ground and SAT-solve
I Problem: How to pick which clauses to link?

I InstGen (Korovin/Ganzinger)
I As clause linking, but guided by propositional model:

I Find model for grounded clause set
I If impossible: Problem is unsatisfiable
I Otherwise: Lift propositional model to first-order
I If that fails: Link conflicting clauses

I Problem: No good equality handling
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Related Work (2)

AVATAR (Voronkov’s brood)
I Abstract propositional structure of clause set
I Independent clause fragments are represented by propositional atoms

I Independent: no variables shared with the rest of the clause
I Equal fragments in different clauses represented by same atom
I Ground and propositional literals are always independent

I While there are propositional models:

I Saturate clause fragments forced true by model
I Contradiction: Eliminate model
I Satisfiable: Problem is satisfiable

Out of propositional models: Unsatisfiable
I Problems:

I (Good) implementation is expensive
I There may not be abstractable propositional structure
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And now for something completely different
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The trouble with literal orderings

I Consider the following clause:

p(X ,Y ) ∨ q(Y ,Z ) ∨ r(Z ,U) ∨ s(U,X )

I With Bachmair/Ganziger literal order: All incomparable
I . . . because (non-equational) literals are compared as terms
I . . . and different variables are uncomparable

I Four maximal literals!

I Four inference literals
I . . . not good for search space!
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Pseudo-transfinite literal orderings

I Term orderings for superpositions need four properties:

I Termination
I Extendable to ground-complete ordering
I Compatibility with substitutions (s > t ; σ(s) > σ(t)
I Compatibility with term structure (s > t ; f (. . . s . . .) > f (. . . t . . .)

I But: Literals cannot be nested!

I We can drop the last condition for literal comparisons

I Alternative literal ordering: Compare predicate symbols first

I Break ties conventionally

I Can (sometimes) reduce the number of maximal literals

I Bachmair/Ganziner proof still goes through (I think ;-)

Initial results: Not a killer, but adds useful variety!

19



Pseudo-transfinite literal orderings

I Term orderings for superpositions need four properties:

I Termination
I Extendable to ground-complete ordering
I Compatibility with substitutions (s > t ; σ(s) > σ(t)
I Compatibility with term structure (s > t ; f (. . . s . . .) > f (. . . t . . .)

I But: Literals cannot be nested!

I We can drop the last condition for literal comparisons

I Alternative literal ordering: Compare predicate symbols first

I Break ties conventionally

I Can (sometimes) reduce the number of maximal literals

I Bachmair/Ganziner proof still goes through (I think ;-)

Initial results: Not a killer, but adds useful variety!

19



Pseudo-transfinite literal orderings

I Term orderings for superpositions need four properties:

I Termination
I Extendable to ground-complete ordering
I Compatibility with substitutions (s > t ; σ(s) > σ(t)
I Compatibility with term structure (s > t ; f (. . . s . . .) > f (. . . t . . .)

I But: Literals cannot be nested!

I We can drop the last condition for literal comparisons

I Alternative literal ordering: Compare predicate symbols first

I Break ties conventionally

I Can (sometimes) reduce the number of maximal literals

I Bachmair/Ganziner proof still goes through (I think ;-)

Initial results: Not a killer, but adds useful variety!

19



And now for something completely different
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Stronger rewriting

I Fact: Incompatable variabls make terms incomparable
I Standard implementation of rewriting with unorientable equations:

I Match potential left hand side onto subterm
I Check generated instance for orientability

I Standard implementation will never be able to use e.g.
f (X , a) = f (b,Y )

I Free variable Y makes right hand side potentially larger
I Happens more often than one might think!

I Solution: Force intantiation of RHS variables

I Pick smallest constant (of the right sort)
I Bind all unbound variables of the RHS

Initial results: Not a killer, but adds useful variety!
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Future Work

I Future work

I Explore different grounding and preprocessing
options

I Explore interaction with other heuristics
I Mine propositional models for interesting

conflicts (a la InstGen)
I Use EUF SMT solver to handle ground

equality
I (Maybe) use general SMT solver to handle

theories (?)

I New literal ordering & Strong rewriting

I Extend handling of equality-literal
I Evaluate different strategies. . .
I . . . in combination with strong rewriting
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Conclusion

I SAT Integration

I CDCL provers have become extremely
powerful

I First-order provers can leverage this power
even with light-weight integration

I Feature is part of the standard E distribution
since E 2.2

I There are still significant calculus refinements

I (Some) implementation neeeded
I Evaluation needed

Thank you!
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