Herbrand’s Revenge
SAT Solving for First-Order Theorem Proving

=

}?
|

U
NW woradINW

i 7T TPy R

Stephan Schulz

n 4@ ~~O0T®HAD
= i}

schulz@eprover.org



Herbrand’s Revenge
SAT Solving for First-Order Theorem Proving

=

)?
|

AU 2ot a

Stephan Schulz

p 40 ~=0T®H AT
- i

schulz@eprover.org



Context: First-Order Theorem Proving

» Theorem proving in first-order logic (with equality)
Quantifiers (¥, 3)
Standard connectives (—,A,V, —,...)
Predicate symbols and function symbols are free
Exception: Equality is a congruence relation

» Standard approach: proof by contradiction
Ax = C
iff
Ax U {~C} is unsatisfiable

» Clausification turns full FOF into equisatisfiable clause set



Context: First-Order Theorem Proving

» Theorem proving in first-order logic (with equality)
Quantifiers (¥, 3)
Standard connectives (—,A,V, —,...)
Predicate symbols and function symbols are free
Exception: Equality is a congruence relation

» Standard approach: proof by contradiction
Ax = C
iff
Ax U {~C} is unsatisfiable

» Clausification turns full FOF into equisatisfiable clause set

Theorem proving is reduced to
showing inconsistency of clause sets!




Herbrand’s Theorem

Herbrand's Theorem (modern version)

“A set of first-order clauses is unsatisfiable, if and only
if it has a finite set of ground instances that is propo-
sitionally unsatisfiable.”

» If there is a model, there is a Herbrand model
Universe consists of ground terms
Function symbols are interpreted as constructors
Extended to equational logic (Herbrand equality model)
» Contraposition: If there is no ground term model, there is no model

Theoretical foundation of most first-order calculi
Practical application?



Consider the following set C of clauses:
1. p(a)
2. =p(X) v p(f(X))
3. —p(f(Y))



Example

Consider the following set C of clauses:
1. p(a)
2. =p(X) V p(F(X))
3. =p(F(Y))
C’ is a set of ground instances of clauses from C:
1. p(a)
2. —p(a) v p(f(a))
3. =p(f(a))



Example

Consider the following set C of clauses:
1. p(a)
2. =p(X) V p(£(X))
3. =p(F(Y))
C’ is a set of ground instances of clauses from C:
1. p(a)
2. —p(a) v p(f(a))
3. =p(f(a))
C’ is propositionally unsatisfiable, hence C is unsatisfiable



Enumerate and Check

» Davis&Putnam 1960: Direct application of Herbrand’s theorem
Enumerate ground instances
Periodically check ground clause set via a specialised form of ground
resolution
A Computing Procedure for Quantification Theory

» Theoretically sound and complete, but little practical success

Resolution is not very strong on propositional logic
Uncontrolled enumeration generates too many irrelevant instances



A Split in the Road

» Davis/Logemann/Loveland (1962): splitting and unit propagation
Search for propositional models
Propagate atom values forced by unit clauses
If no units, case distinction by splitting
Backtracking on fail

CDCL: DPLL+clause learning-+non-chronological backtracking



A Split in the Road

» Davis/Logemann/Loveland (1962): splitting and unit propagation
Search for propositional models
Propagate atom values forced by unit clauses
If no units, case distinction by splitting
Backtracking on fail
CDCL: DPLL+clause learning-+non-chronological backtracking

Modern CDCL solvers are unreasonably successful in practice

)




A Split in the Road

» Davis/Logemann/Loveland (1962): splitting and unit propagation
Search for propositional models
Propagate atom values forced by unit clauses
If no units, case distinction by splitting
Backtracking on fail
CDCL: DPLL+clause learning-+non-chronological backtracking

Modern CDCL solvers are unreasonably successful in practice

» Robinson (1965): Generate instances via unification
Instantiation only to make conflicting constraints explicit (most
general unifier)

Only instantiate as lightly as possible (most general unifier)
Integrated into generating inferences
Saturation/Proof completed by derivation of empty clause



A Split in the Road

» Davis/Logemann/Loveland (1962): splitting and unit propagation
Search for propositional models
Propagate atom values forced by unit clauses
If no units, case distinction by splitting
Backtracking on fail
CDCL: DPLL+clause learning-+non-chronological backtracking

Modern CDCL solvers are unreasonably successful in practice

» Robinson (1965): Generate instances via unification
Instantiation only to make conflicting constraints explicit (most
general unifier)

Only instantiate as lightly as possible (most general unifier)
Integrated into generating inferences
Saturation/Proof completed by derivation of empty clause

Unification/Saturation: Foundation of most state-of-the-art
FO-provers



DPLL on C':
1. p(a)
2. =p(a) v p(f(a))
3. —p(f(a))



DPLL on C':
1. p(a)
2. =p(a) v p(f(a))

3. —p(f(a))
4. Propagate 1: p(f(a)) (from 2)
5. Propagate 4: O (from 3)



DPLL and Resolution

DPLL on C':
1. p(a)
2. —p(a) v p(f(a))
3. —p(f(a))
4. Propagate 1: p(f(a)) (from 2)
5. Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

But:
Instantiations provided externally!




DPLL and Resolution

DPLL on C':
1. p(a)
2. —p(a) v p(f(a))
3. —p(f(a))
4. Propagate 1: p(f(a)) (from 2)
5. Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

But:
Instantiations provided externally!




DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

But:

Instantiations provided externally!

Resolution on C:
1. p(a)
2. =p(X) v p(f(X))
3. =p(F(Y))



DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

Instantiations provided externally!

But:

Resolution on C:

p(a)
—p(X) Vv p(f(X))
-p(f(Y))

p(f(a)) from 1,2 with
oc={Xwm a}

O from 4,3 with o = {Y +— a}



DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

But:

Instantiations provided externally!

Resolution on C:

1. p(a)

2. =p(X) v p(f(X))
3. =p(F(Y))
4

. p(f(a)) from 1,2 with
oc={Xwm a}

5. O from 4,3 with 0 = {Y +— a}
Instantiations generated by

unification!
What could possibly go wrong?




DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

Instantiations provided externally!

But:

Resolution on C:

p(a)
—p(X) V p(f(X))
-p(f(Y))

p(f(a)) from 1,2 with
o={X+r— a}



DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

Instantiations provided externally!

But:

Resolution on C:

~N

p(a)
—p(X) Vv p(f(X))
-p(f(Y))

p(f(a)) from 1,2 with
o={X+r— a}

p(f(f(a)) from 5,2 with
oc={Xw~ a}

. p(f(f(f(a))) from 4,2 with

oc={Xw~ a}

p(f(f(f(f(a)))) from 5,2 with o = {X — a}



DPLL and Resolution

DPLL on C':

. p(a)

- —p(a) v p(f(a))
- ~p(f(a))

.
5.

Propagate 1: p(f(a)) (from 2)
Propagate 4: O (from 3)

No decision/split, hence no
backtracking: C’ is unsatisfiable

Instantiations provided externally!

But:

Unification-based saturation needs:

» Systematic inference control
» Fair inference strategy

» Good heuristic guidance




Saturation: Implementation and Observation

P

(processed clauses)

Chea
Slmplljlgy

Simplify
U
(unprocessed clauses)






e Fully processed
o Direct consequences computed
e Direct conflicts uncovered



e Instantiated
. . o Fully processed
e No interactions R
o Direct consequences computed

e Conflicts remain hidden . ;
e Direct conflicts uncovered



The Best of Both Worlds

» Combine saturation and CDCL

Saturation creates instances in controlled manner
CDCL uncovers hidden conflicts

» Implemention

Standard given-clause saturation algorithm (E)
Periodic grounding and SAT check (PicoSAT)



The Best of Both Worlds

» Combine saturation and CDCL

Saturation creates instances in controlled manner
CDCL uncovers hidden conflicts

» Implemention

Standard given-clause saturation algorithm (E)
Periodic grounding and SAT check (PicoSAT)

E

PicoSAT

Propositional

FO clause set clause set

Z \ Propositional
Encoder/ bCL

Saturation Loop Engi
ngine
Decoder &

FO proof Propositional

derivation
Il




The Best of Both Worlds

while U # {}
if prop_trigger(U,P)
if prop_unsat_check(U,P)
SUCCESS, Proof found
g = extract_best(U)
g = simplify(g, P)
if g ==
SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)
P = P\{c € P | c subsumed by (or otherwise redundant w.r.t.) g}
T ={c € P | ¢ can be simplified with g}
P=(P\T)U{g}
T = T U generate(g, P)
T ={}
foreach ce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
T =T U{c}
u=uuT
SUCCESS, original U is satisfiable

10



Experimental Setup

E 2.1 with SAT extensions

16048 TPTP 7.0.0 CNF and FOF problems
Different base strategies

Different grounding constants

300 second overall time limit on StarExec cluster

vVvyvyvyyvyy

3 seconds per attempt for PicoSAT

11



Core results

» Basic result: About 1% more proofs than plain saturation
» About 10% success on hard problems

Saturation alone solves ca. 90% of problems before first SAT check
PicoSAT contributes about 10% of proofs in cases where it is used

12



Core results

» Basic result: About 1% more proofs than plain saturation

» About 10% success on hard problems
Saturation alone solves ca. 90% of problems before first SAT check
PicoSAT contributes about 10% of proofs in cases where it is used

» SAT problem properties
Large (median 160 000 clauses)
Purity reduction removes ca. 90% of clauses
95% easily satisfiable, 2.5% unsat, 2.5% timeout
Unsatisfiable core is small (median 4 clauses)
Successes for hard SAT and near-SAT problems

12



Core results

» Basic result: About 1% more proofs than plain saturation

» About 10% success on hard problems
Saturation alone solves ca. 90% of problems before first SAT check
PicoSAT contributes about 10% of proofs in cases where it is used

» SAT problem properties
Large (median 160 000 clauses)
Purity reduction removes ca. 90% of clauses
95% easily satisfiable, 2.5% unsat, 2.5% timeout
Unsatisfiable core is small (median 4 clauses)
Successes for hard SAT and near-SAT problems

Success rate not overwhelming, but promising

12



SAT Proof Properties

Statistic Min 1st q. Median 3rd q. Max
Clauses 3825 65972 160999 296951 2107682
Non-pure 2 1297 10478 36739 861260
Unsat core 2 3 4 10 1705

» “Unsatisfiable core is small (median 4 clauses)

If only the saturation engine could magically pick the right clauses. ..
Further highlights the potential for good search heuristics for
first-order reasoning!

13



SAT Proof Properties

Statistic Min 1st q. Median 3rd q. Max
Clauses 3825 65972 160999 296951 2107682
Non-pure 2 1297 10478 36739 861260
Unsat core 2 3 4 10 1705

» “Unsatisfiable core is small (median 4 clauses)”
If only the saturation engine could magically pick the right clauses. ..
Further highlights the potential for good search heuristics for
first-order reasoning!

» ... but saturation will not beat CDCL on hard SAT problems

Orders of magnitude advantage in speed
Orders of magnitude davantage in memory

13



Heuristic choice points

» How often do we ground?/What is prop_trigger()?

Every n iterations of the main loop

Every n newly generated unprocessed clauses

Every time the number of terms inserted into the term bank for the
first time exceeds n* 2 for k € N

» Which constants do we for instantiation?

Fresh constant
First constant
Most/least frequent constant in axioms/conjectures (various
combinations)

» How long do we give the sat solver?

Limit on number of decision literals processed
Unlimited
(time limit - not implemented, | don’t like the non-determinism)

14



Related Work (1)

» Clause Linking (Plaisted et al):
Simply create (“linking”) instances via unification of clause pairs
Periodically ground and SAT-solve
Problem: How to pick which clauses to link?
» InstGen (Korovin/Ganzinger)
As clause linking, but guided by propositional model:

» Find model for grounded clause set

» If impossible: Problem is unsatisfiable

» Otherwise: Lift propositional model to first-order
» If that fails: Link conflicting clauses

Problem: No good equality handling

15



Related Work (2)

AVATAR (Voronkov's brood)

» Abstract propositional structure of clause set
Independent clause fragments are represented by propositional atoms

» Independent: no variables shared with the rest of the clause
» Equal fragments in different clauses represented by same atom
» Ground and propositional literals are always independent

» While there are propositional models:
Saturate clause fragments forced true by model
Contradiction: Eliminate model
Satisfiable: Problem is satisfiable
Out of propositional models: Unsatisfiable
» Problems:

(Good) implementation is expensive
There may not be abstractable propositional structure

16



17



The trouble with literal orderings

» Consider the following clause:

p(X,Y)Vaq(Y,Z)Vvr(Z,U)Vs(U,X)

With Bachmair/Ganziger literal order: All incomparable
... because (non-equational) literals are compared as terms
... and different variables are uncomparable

» Four maximal literals!

Four inference literals
... not good for search space!

18



Pseudo-transfinite literal orderings

» Term orderings for superpositions need four properties:
Termination
Extendable to ground-complete ordering
Compatibility with substitutions (s > t ~ o(s) > o(t)

Compatibility with term structure (s >t~ f(...s...) > f(...

19



Pseudo-transfinite literal orderings

» Term orderings for superpositions need four properties:
Termination
Extendable to ground-complete ordering
Compatibility with substitutions (s > t ~ o(s) > o(t)

Compatibility with term structure (s >t~ f(...s...) > f(...

» But: Literals cannot be nested!
We can drop the last condition for literal comparisons

» Alternative literal ordering: Compare predicate symbols first
Break ties conventionally

» Can (sometimes) reduce the number of maximal literals
Bachmair/Ganziner proof still goes through (I think ;-)

19



Pseudo-transfinite literal orderings

» Term orderings for superpositions need four properties:
Termination
Extendable to ground-complete ordering
Compatibility with substitutions (s > t ~ o(s) > o(t)

Compatibility with term structure (s >t~ f(...s...) > f(...

» But: Literals cannot be nested!
We can drop the last condition for literal comparisons

» Alternative literal ordering: Compare predicate symbols first
Break ties conventionally

» Can (sometimes) reduce the number of maximal literals
Bachmair/Ganziner proof still goes through (I think ;-)

Initial results: Not a killer, but adds useful variety!

19



20



Stronger rewriting

» Fact: Incompatable variabls make terms incomparable
» Standard implementation of rewriting with unorientable equations:

Match potential left hand side onto subterm
Check generated instance for orientability

» Standard implementation will never be able to use e.g.
f(X,a) = f(b,Y)
Free variable Y makes right hand side potentially larger
Happens more often than one might think!
» Solution: Force intantiation of RHS variables

Pick smallest constant (of the right sort)
Bind all unbound variables of the RHS

21



Stronger rewriting

» Fact: Incompatable variabls make terms incomparable
» Standard implementation of rewriting with unorientable equations:

Match potential left hand side onto subterm
Check generated instance for orientability

» Standard implementation will never be able to use e.g.
f(X,a)=1(b,Y)
Free variable Y makes right hand side potentially larger
Happens more often than one might think!
» Solution: Force intantiation of RHS variables

Pick smallest constant (of the right sort)
Bind all unbound variables of the RHS

Initial results: Not a killer, but adds useful variety!

21



Future Work

» Future work

Explore different grounding and preprocessing
options

Explore interaction with other heuristics
Mine propositional models for interesting
conflicts (a la InstGen)

Use EUF SMT solver to handle ground
equality

(Maybe) use general SMT solver to handle
theories (?)

» New literal ordering & Strong rewriting

Extend handling of equality-literal
Evaluate different strategies. ..
...in combination with strong rewriting

22



Conclusion

» SAT Integration
CDCL provers have become extremely
powerful
First-order provers can leverage this power
even with light-weight integration
Feature is part of the standard E distribution
since E 2.2

» There are still significant calculus refinements

(Some) implementation neeeded
Evaluation needed

23



Conclusion

» SAT Integration
CDCL provers have become extremely
powerful
First-order provers can leverage this power
even with light-weight integration
Feature is part of the standard E distribution
since E 2.2

» There are still significant calculus refinements

(Some) implementation neeeded
Evaluation needed

Thank you!

23



Conclusion

» SAT Integration
CDCL provers have become extremely
powerful
First-order provers can leverage this power
even with light-weight integration
Feature is part of the standard E distribution
since E 2.2

» There are still significant calculus refinements

(Some) implementation neeeded
Evaluation needed

Questions?

23



