
1/17

Hints for AVATAR
(and some more)

Martin Suda

Czech Technical University in Prague, Czech Republic

PIWo 2019, Prague, October 2019

1/17

“Interactive Theorem Proving” with ATPs

Some people actually use ATPs to do math!

e.g., Bob Veroff and Michael Kinyon
using Otter, Prover9, Mace4
questions from algebra: axioms bases for boolean algebras,
ortho-lattices, loop theory
targeting open problems (e.g. the AIM conjecture)

In what sense interactive?
a single proof attempt (ATP call) usually does not solve it
trying different formulations / axiomatizations
trying various additional assumptions and learning from them

å By the way, these attempts may run for weeks!

1/17

“Interactive Theorem Proving” with ATPs

Some people actually use ATPs to do math!
e.g., Bob Veroff and Michael Kinyon
using Otter, Prover9, Mace4
questions from algebra: axioms bases for boolean algebras,
ortho-lattices, loop theory
targeting open problems (e.g. the AIM conjecture)

In what sense interactive?
a single proof attempt (ATP call) usually does not solve it
trying different formulations / axiomatizations
trying various additional assumptions and learning from them

å By the way, these attempts may run for weeks!

1/17

“Interactive Theorem Proving” with ATPs

Some people actually use ATPs to do math!
e.g., Bob Veroff and Michael Kinyon
using Otter, Prover9, Mace4
questions from algebra: axioms bases for boolean algebras,
ortho-lattices, loop theory
targeting open problems (e.g. the AIM conjecture)

In what sense interactive?
a single proof attempt (ATP call) usually does not solve it
trying different formulations / axiomatizations
trying various additional assumptions and learning from them

å By the way, these attempts may run for weeks!

1/17

“Interactive Theorem Proving” with ATPs

Some people actually use ATPs to do math!
e.g., Bob Veroff and Michael Kinyon
using Otter, Prover9, Mace4
questions from algebra: axioms bases for boolean algebras,
ortho-lattices, loop theory
targeting open problems (e.g. the AIM conjecture)

In what sense interactive?
a single proof attempt (ATP call) usually does not solve it
trying different formulations / axiomatizations
trying various additional assumptions and learning from them

å By the way, these attempts may run for weeks!

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some
more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some
more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some

more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some
more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some
more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

2/17

Hints

What is a hint?
a clause supplied by the user as part of the input
whenever a newly derived clause C subsumes a hint clause,
this C is prioritized for selection

å Hints are a means for steering the proof search!

Where do hints come from?
the (expert) user just thinks of some
more realistically: clauses from proofs of similar theorems or
of the same theorem but under different assumptions

å Hope that similar theorems can be proved using similar
intermediate steps.

How to come up with hints automatically?

3/17

AVATAR: a reminder

AVATAR [Voronkov’14]

modern architecture of first order theorem provers
integrates saturation with a SAT solver (or an SMT solver)
efficient realization of the clause splitting rule
instead of one monolithic proof search
a sequence of proof searches on (much) smaller sub-problems

implemented in theorem prover Vampire
shown highly successful in practice

4/17

AVATAR architecture overview

Splitting Interface

Base (SAT or SMT) solver

FO solver
Update model
New splittable clause: C1 _ . . ._ Cn

New contradiction K Ð rC1s, . . . , rCns

Assert C Ð rC s
Remove component C

Solve
Insert split clause rC1s _ . . ._ rCns

Insert contradiction clause rC1s _ . . ._ rCns

Model or
Unsatisfiable

5/17

Boosting AVATAR with hints

Instead of waiting for the user to supply hints for problem P . . .

. . . attempt P using AVATAR and collect as hints the first-order
parts of the clauses appearing in the sub-proofs of the so far
derived contradiction clauses

DEMO!

5/17

Boosting AVATAR with hints

Instead of waiting for the user to supply hints for problem P . . .

. . . attempt P using AVATAR and collect as hints the first-order
parts of the clauses appearing in the sub-proofs of the so far
derived contradiction clauses

DEMO!

6/17

Outline

1 Hints for AVATAR

2 An Experiment

3 What is a Significant Improvement?

7/17

Outline

1 Hints for AVATAR

2 An Experiment

3 What is a Significant Improvement?

8/17

Experimental setup

Vampire setup:
--saturation_algorithm discount (for stability)
--age_weight_ratio 1:10 (works well with discount)
--time_limit 10 (reasonable time to finish)

Computers:
either Starexec
or CTU’s (slurm) cluster

The benchmark:
TPTP v 7.2.0
17573 eligible first-order problems

8/17

Experimental setup

Vampire setup:
--saturation_algorithm discount (for stability)
--age_weight_ratio 1:10 (works well with discount)
--time_limit 10 (reasonable time to finish)

Computers:
either Starexec
or CTU’s (slurm) cluster

The benchmark:
TPTP v 7.2.0
17573 eligible first-order problems

8/17

Experimental setup

Vampire setup:
--saturation_algorithm discount (for stability)
--age_weight_ratio 1:10 (works well with discount)
--time_limit 10 (reasonable time to finish)

Computers:
either Starexec
or CTU’s (slurm) cluster

The benchmark:
TPTP v 7.2.0
17573 eligible first-order problems

9/17

Results

(on Starexec)

configuration solved uniques additional
base 7914 0 7914
base+hints 7882 2 62
sac 8100 13 299
sac+hints 8106 13 23

base = -sa discount -awr 10 -t 10
sac = --split_at_activation on

Experimented with AVATAR flushing; also not very interesting

9/17

Results

(on Starexec)

configuration solved uniques additional
base 7914 0 7914
base+hints 7882 2 62
sac 8100 13 299
sac+hints 8106 13 23

base = -sa discount -awr 10 -t 10
sac = --split_at_activation on

Experimented with AVATAR flushing; also not very interesting

10/17

Let’s try a different benchmark . . .

MIZAR bushy “small”
57 880 problems translated from the MIZAR library

(base: -sa discount -awr 10 -t 10 -sac on)

Results

configuration solved uniques
base 14843 184
base+hints 14873 214

(30 problems is approx. 0.5%� of the benchmark size)

10/17

Let’s try a different benchmark . . .

MIZAR bushy “small”
57 880 problems translated from the MIZAR library

(base: -sa discount -awr 10 -t 10 -sac on)

Results

configuration solved uniques
base 14843 184
base+hints 14873 214

(30 problems is approx. 0.5%� of the benchmark size)

10/17

Let’s try a different benchmark . . .

MIZAR bushy “small”
57 880 problems translated from the MIZAR library

(base: -sa discount -awr 10 -t 10 -sac on)

Results

configuration solved uniques
base 14843 184
base+hints 14873 214

(30 problems is approx. 0.5%� of the benchmark size)

10/17

Let’s try a different benchmark . . .

MIZAR bushy “small”
57 880 problems translated from the MIZAR library

(base: -sa discount -awr 10 -t 10 -sac on)

Results

configuration solved uniques
base 14843 184
base+hints 14873 214

(30 problems is approx. 0.5%� of the benchmark size)

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .

maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!

maybe we should have a smarter notion of similarity!
demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

11/17

So, should we be sad and abandon the idea?

Maybe, but . . .
maybe it only gets interesting with really hard problems!
maybe we should have a smarter notion of similarity!

demodulate hints?

maybe we need restarts to prevent the prover from choking

we should also try strengthening the theory with reasonable
additional assumptions, as routinely done by Veroff et al.

å Ongoing and future work!

12/17

Outline

1 Hints for AVATAR

2 An Experiment

3 What is a Significant Improvement?

13/17

A Methodology Question

When should we get excited about a new technique?

1 The idea looks clever and sophisticated
å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline

å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline

å To have a chance to improve strategy schedule . . .

13/17

A Methodology Question

When should we get excited about a new technique?
1 The idea looks clever and sophisticated

å Could aim for a pure theory paper at CADE!

2 Solves more problems than baseline
å Obviously, this gives us more power!

3 The solution set differs enough from baseline
å To have a chance to improve strategy schedule . . .

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?
Keep a database of problems known to be solvable by some
strategy and compare against that.
å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?

Keep a database of problems known to be solvable by some
strategy and compare against that.
å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?
Keep a database of problems known to be solvable by some
strategy and compare against that.

å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?
Keep a database of problems known to be solvable by some
strategy and compare against that.
å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?
Keep a database of problems known to be solvable by some
strategy and compare against that.
å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

14/17

Focusing on the Third Point

Proof search is known to be very fragile. Even a small change will
“stir” it and create a different solution set.

What does it mean to differ enough from baseline?
Keep a database of problems known to be solvable by some
strategy and compare against that.
å Computationally expensive, open ended, but YES!

While the database is being built . . .

Let’s have some random fun!

15/17

Randomly permuting the input problem

Use tptp4X -trandomize from the TPTP toolset to:
randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems?

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

(now on the CTU cluster)

å recalling randoCoP (Raths, Otten; 2008)

15/17

Randomly permuting the input problem

Use tptp4X -trandomize from the TPTP toolset to:
randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems?

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

(now on the CTU cluster)

å recalling randoCoP (Raths, Otten; 2008)

15/17

Randomly permuting the input problem

Use tptp4X -trandomize from the TPTP toolset to:
randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems?

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

(now on the CTU cluster)

å recalling randoCoP (Raths, Otten; 2008)

15/17

Randomly permuting the input problem

Use tptp4X -trandomize from the TPTP toolset to:
randomize the order of commutative logical operations
randomize the order of formulas

Can we solve more problems?

configuration solved uniques additional
straight 8612 53 8612
shuffled1 8773 60 345
shuffled2 8788 85 128
shuffled3 8775 48 48

(now on the CTU cluster)

å recalling randoCoP (Raths, Otten; 2008)

16/17

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

16/17

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

16/17

One more experiment with randomness

Clause Selection and Age-weight Ratio
Vampire alternates between selecting the next given clause by age
(old first) and by weight (light first) under a given ratio.

Normally, this alternation is regular. What if we change it to
probabilistic?

configuration solved uniques additional
base 8725 12 8725
rnd1 8747 8 91
rnd2 8744 16 37
rnd3 8768 23 37
rnd4 8735 14 21
rnd5 8741 16 16

base = -sa discount -awr 1:1 -t 10

17/17

Summary

Empirical research with an ATP:
1 have a new idea
2 implement (and debug)
3 conduct experiments

When are the results significant?
improving overall performance (high total solved)
solving hard problems (“the uniques”)

Why don’t we use (carefully seeded) randomness to prove more
theorems (without much actual extra thinking)?

17/17

Summary

Empirical research with an ATP:
1 have a new idea
2 implement (and debug)
3 conduct experiments

When are the results significant?
improving overall performance (high total solved)
solving hard problems (“the uniques”)

Why don’t we use (carefully seeded) randomness to prove more
theorems (without much actual extra thinking)?

17/17

Summary

Empirical research with an ATP:
1 have a new idea
2 implement (and debug)
3 conduct experiments

When are the results significant?
improving overall performance (high total solved)
solving hard problems (“the uniques”)

Why don’t we use (carefully seeded) randomness to prove more
theorems (without much actual extra thinking)?

	Hints for AVATAR
	An Experiment
	What is a Significant Improvement?

