Synthesis of Diophantine equations

Thibault Gauthier

February 17, 2020

Can we teach conceptualization (synthesis) to a computer?

$2,4,6,8,\ldots$

$2,4,6,8,\ldots$

$$2, 4, 6, 8, \ldots$$

$$2, 4, 6, 8, \ldots$$

$$k - 2x = 0$$

$$2, 4, 6, 8, \ldots$$

$$k - 2x = 0$$

$$k(k-1)=0$$

Diophantine equation:

$$P(k_1,\ldots,k_n,x_1,\ldots,x_m)=0$$

Diophantine set:

$$\{\{k_1,\ldots,k_n\}\mid \exists x_1\ldots x_m. \ P(k_1,\ldots,k_n,x_1,\ldots,x_m)=0\}$$

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Solved by Yu. V. Matiyasevich in 1970.

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Solved by Yu. V. Matiyasevich in 1970.

Given a subset S of $\mathbb{Z}/16\mathbb{Z}$, find a polynomial P(k, x, y, z) with maximal exponent 4 such as:

$$S = \{k \mid \exists xyz. \ P(k, x, y, z) = 0 \ \text{mod} \ 16\}$$

Representation of polynomials

$$[[1, 2, 3], [2, 0, 0, 4]]$$

1 × k² × x³ + 2 × k⁰ × x⁰ × y⁴
k² × x³ + 2 × y⁴

Synthesis of polynomials

- Move to the next monomial and choose its coefficient
- Choose the exponent of the next variable in the monomial

State:

targeted set: $\{1, 3, 7, 15\}$ $2 \times k^3 + 5$

Moves:

 $2 \times k^3 + 5 \times k^2$ $2 \times k^3 + 5 + 6$

Winning condition:

Diophantine set is equal to the targeted set.

A policy P is a function from \mathbb{S} to $[0,1]^{cardinal(\mathbb{M})}$

A value V is a function from S to the interval [0,1].

An example for the state s is a triple (s, V(s), P(s)).

How to get **balanced** and **adaptable** training examples?

From 2000 generated target sets, select 200:

- 100 positives and 100 negatives
- Probability: $\frac{1}{row(set)}$

Figure: Number y of problems solved after generation \boldsymbol{x}

Strategy	Train (2000)	Test (200)
breadth-first search	3.70	4.0
distance heuristic	3.05	2.0
TNN-guided	77.15	74.5

Table: Percentage of problems solved in 60 seconds

Demo

Bonus: Using combinators to do program synthesis?

$$(K x) y = x$$

 $((S x) y) z = (x y)(x z)$

Problem:

$$\exists C. ((C x) y) z = (x z) y$$

Solution:

$$C = S (S (K (S (K S) K)) S) (K K)$$

Training

Figure: Number y of problems solved after generation x

Results

Prover	Strategy	Train (2000)	Test (200)
E prover	auto	38.80	36.0
	auto-schedule	50.35	48.5
Vampire	default	4.15	3.5
	mode casc	63.45	62.0
MCTS _{combinators}	breadth-first search	27.65	27.0
	TNN-guided	72.7	65.0

Table: Percentage of problems solved within 60 seconds