Synthesis of Diophantine equations

Thibault Gauthier

February 17, 2020

Can we teach conceptualization (synthesis) to a computer?

$$
2,4,6,8, \ldots
$$

$$
2,4,6,8, \ldots
$$

0,1

$$
2,4,6,8, \ldots
$$

$$
0,1
$$

$$
\begin{aligned}
& 2,4,6,8, \ldots \\
& k-2 x=0
\end{aligned}
$$

$$
0,1
$$

$$
\begin{aligned}
& 2,4,6,8, \ldots \\
& k-2 x=0
\end{aligned}
$$

$$
0,1
$$

$$
k(k-1)=0
$$

Diophantine equation:

$$
P\left(k_{1}, \ldots, k_{n}, x_{1}, \ldots, x_{m}\right)=0
$$

Diophantine set:

$$
\left\{\left\{k_{1}, \ldots, k_{n}\right\} \mid \exists x_{1} \ldots x_{m} . P\left(k_{1}, \ldots, k_{n}, x_{1}, \ldots, x_{m}\right)=0\right\}
$$

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Solved by Yu. V. Matiyasevich in 1970.

Given a computable (recursively enumerable) set, find the Diophantine equation corresponding to the set.

Solved by Yu. V. Matiyasevich in 1970.

Given a subset S of $\mathbb{Z} / 16 \mathbb{Z}$, find a polynomial $P(k, x, y, z)$ with maximal exponent 4 such as:

$$
S=\{k \mid \exists x y z . P(k, x, y, z)=0 \bmod 16\}
$$

Representation of polynomials

$$
\begin{gathered}
{[[1,2,3],[2,0,0,4]]} \\
1 \times k^{2} \times x^{3}+2 \times k^{0} \times x^{0} \times y^{4} \\
k^{2} \times x^{3}+2 \times y^{4}
\end{gathered}
$$

Synthesis of polynomials

- Move to the next monomial and choose its coefficient
- Choose the exponent of the next variable in the monomial

State:

$$
\begin{gathered}
\text { targeted set: }\{1,3,7,15\} \\
2 \times k^{3}+5
\end{gathered}
$$

Moves:

$$
\begin{gathered}
2 \times k^{3}+5 \times k^{2} \\
2 \times k^{3}+5+6
\end{gathered}
$$

Winning condition:
Diophantine set is equal to the targeted set.

A policy P is a function from \mathbb{S} to $[0,1]^{\text {cardinal }(\mathbb{M})}$

A value V is a function from \mathbb{S} to the interval $[0,1]$.

An example for the state s is a triple $(s, V(s), P(s))$.

How to get balanced and adaptable training examples?

From 2000 generated target sets, select 200:

- 100 positives and 100 negatives
- Probability: $\frac{1}{\operatorname{row}(\text { set })}$

Figure: Number y of problems solved after generation x

Strategy	Train (2000)	Test (200)
breadth-first search	3.70	4.0
distance heuristic	3.05	2.0
TNN-guided	77.15	74.5

Table: Percentage of problems solved in 60 seconds

Demo

Bonus: Using combinators to do program synthesis?

$$
\begin{gathered}
(K x) y=x \\
((S x) y) z=(x y)(x z)
\end{gathered}
$$

Problem:

$$
\exists C \cdot((C x) y) z=(x z) y
$$

Solution:

$$
C=S(S(K(S(K S) K)) S)(K K)
$$

Training

Figure: Number y of problems solved after generation x

Results

Prover	Strategy	Train (2000)	Test (200)
E prover	auto	38.80	36.0
	auto-schedule	50.35	48.5
Vampire	default	4.15	3.5
	mode casc	63.45	62.0
MCTS $_{\text {combinators }}$	breadth-first search	27.65	27.0
	TNN-guided	72.7	65.0

Table: Percentage of problems solved within 60 seconds

