
Evolutionary learning of 
recurrent neural networks

(unpublished experiments from 2008)
Tomas Mikolov, 2020



The idea
● stochastic gradient descent had many issues:

○ was believed to not work for deep nets, and also for recurrent nets
○ cannot optimize architecture of the network
○ requires differentiable cost function and strong supervision

● evolutionary optimization can somewhat avoid all these problems
○ very simple, but computationally much more expensive



Evolving recurrent networks
Evolutionary learning:

● compute random change of the 
network weights and architecture

● check if the change is beneficial: if 
yes, keep it, otherwise reload the 
previous model

SGD:

● compute best direction how to 
reduce error for given training 
example

● make a small step in this direction
● iterate for all training examples



Tips & tricks
● start small
● accept only changes significantly

better than threshold T
● reduce T with time



Can this actually work?
● for simple problems: yes! (stack-RNNs, problems like sequence 

memorization)
● for larger problems: very inefficient and slow

● the largest successful experiment in 2008: character-based language 
modeling using several tens of thousands of characters, after 2 days of 
training the same performance as 6-gram model



Why this does not scale?
● the changes are random:

○ less and less likely to be beneficial
○ can be seen as rule-based static learning rule: no adaptation or learning of the training 

algorithm happens during the evolution

● however, very easy to parallelize
● with some idea how to learn the model updates, there might be some hope
● also combination with SGD might help (-> neural architecture search) 


