
Challenge Examples for Higher-Order ATPS

Chad E. Brown

March 29, 2019

We give three challenge examples for higher-order automated theorem provers like
Satallax [2]. In each case we discuss how Satallax could communicate with an advisor
to direct it in a way to find the proof and speculate about how such an advisor might
be trained using machine learning techniques. The advisor used here was hard coded
to work for these specific examples.

1 Replacement Implies Separation

The first example is the proof that the separation axiom in set theory follows from
the replacement axiom. This is the first scheme proven in [3] and is not difficult for
a human. Unfortunately it requires a higher-order instantiation currently out of reach
for higher-order automated theorem provers. There is currently no mode with which
Satallax has been able to prove this example.

Let ∈: ι → ι → o be a constant which we will write in infix. The replacement
property can be stated is follows:

∀Aι.∀rι→ι→o.(∀x.x ∈ A → ∀yzι.r x y∧r x z → y = z) → ∃Bι.∀y.y ∈ B ⇔ ∃x.x ∈ A∧r x y.

The separation property can be stated as follows:

∀Aι.∀pι→o.∃Bι.∀x.x ∈ B ⇔ x ∈ A ∧ p x.

While Satallax cannot currently prove separation from replacement on its own, it
can easily prove it by receiving advice from the hard-coded advisor:

time satallax -m mode300 -advisorsocket 2332 replimpsep.p

Connected to 2332

% SZS status Theorem

% Mode: mode300

% Inferences: 242

real 0m0.127s

user 0m0.008s

sys 0m0.004s

1



The advisor handles this example as follows. When the replacement axiom is pro-
cessed, it is recognized and the type ι and the constant ∈ are remembered. As search
proceeds the negated conjecture will lead to a proposition of the form

∀B.¬(∀x.x ∈ B ⇔ x ∈ A ∧ p x)

for eigenvariables A and p. The advisor recognizes this formula and remembers the A

and p. After both of the propositions have been recognized, the advisor pushes the
general suggestion of using the instantiation λxy.px ∧ x = y onto its suggestion stack.
This suggestion is given to Satallax the next time Satallax requests a general suggestion.

While giving this suggestion is clearly the most helpful advice, the rest of the proof
is still not completely trivial. After the suggestion has been given the advisor recognizes
future propositions which are known to be part of a proof and gives these a high priority
(and all other propositions a low priority). In addition, once the existential quantifier in
the replacement property has generated an eigenvariable as a witness, this eigenvariable
is explicitly suggested by the advisor as an instantiation, as this will be the witness for
the separation property. This, of course, makes the proof easy for Satallax.

In this case, it is not clear how such an advisor should be learned from examples.
Presumably there would need to be other examples which make successful use of an
instantiation of the form λxy.px ∧ x = y.

2 Injective Cantor

The injective form of Cantor’s Theorem was given as a challenge problem in [1] along
with a suggested idea for a proof [1]. It can be stated as follows:

¬∃f(ι→o)→ι
.∀XYι→o.f X = f Y → X = Y.

Unlike the surjective form of Cantor’s Theorem, the injective version seems to require
a nontrivial instantiation and clever choices after this instantiation has been made.
As discussed in [1] considering a diagonal set of the form {f Y |¬Y (f Y )} leads to a
contradiction. However, representing this set in simple type theory requires the use of a
higher-order quantifier inside the higher-order instantiation. For example, the diagonal
set can be represented as follows:

D := λxι.∃Yι→o.x = f Y ∧ ¬Y x.

Generating such an instantiation by blind enumeration seems unlikely and it is not clear
how a learning algorithm would be encouraged to suggest it. Even once we have the
instantation, a cut-free proof would require some unintuitive steps.1 The more intuitive

1I encourage the reader to try this. The only assumption you have is injectivity of f . You are
allowed to use D but no cuts. What do you do? I know a way to proceed, shown to me by Peter
Andrews, but you have to do something that seems like it is obviously a bad idea. Ask me if you want
to know what I mean.



step would be to simply give D (f D) as a cut formula (as is more or less suggested
in [1]).

The hard-coded advisor recognizes when a proposition asserting a name of a type
like (α → o) → α to be injective is processed. If such a proposition is recognized for
a name f , the term D above is constructed. Instead of simply suggesting this as an
instantiation, the advisor first suggests D (f D) as a cut formula and then suggests D
and f D as instantiations. Even with these suggestions, finding the proof still requires
the advisor to block unhelpful paths and to suggest an eigenvariable (coming from
the quantifier inside the D) as a useful instantiation. Once enough information was
hard-coded into the advisor, the problem became easy.2

time satallax -m mode300 -advisorsocket 2332 injcantor.p

Connected to 2332

% SZS status Theorem

% Mode: mode300

% Inferences: 13

real 0m0.031s

user 0m0.004s

sys 0m0.000s

Again, it is unclear how an algorithm could learn to synthesize either the instanti-
ation

D := λxι.∃Yι→o.x = f Y ∧ Y x

or the cut formula D (f D). I know of no other example that requires this instantiation.
It is conceivable a learner could start to recognize formulas that appear to say a

function f of type (α → o) → α is injective and in such cases suggest the D above and
the cut formula D (f D). This could be seen as a human writing a “tactic” and the
learner recognizing when to use it. On the other hand, it seems like a more successful
approach in such a case would be to include the instance of Injective Cantor for f if f
is recognized to be “probably” injective instead of trying to reprove Injective Cantor.

3 Commutativity of Addition

As a final challenge example, we consider commutativity of addition on the natural
numbers. This requires a proof by induction that also requires two subinductions. As

2The typical process of hard-coding the advisor was to run Satallax with the advisor for a few
seconds with both Satallax and the advisor giving verbose output. Using the output, I could check
by hand the latest propositions that should be “good” but were labeled by the advisor as “bad” (the
default). These propositions were added to the function adapting priorities so they would be recognized
as “good.” In many cases there were instantiations that also needed to either be suggested or at least
recognized as “good.” In every case, as soon as Satallax succeeded, I stopped hard-coding, but by that
point the problem was typically solved quickly.



a higher-order theorem, this means there will be a higher-order quantifier that must be
instantiated in three different ways.

Let 0 : ι, s : ι → ι and a : ι → ι → ι be constants for 0, successor and addition. We
will write u+ v for a u v. Assume the induction principle:

∀Pι→o.P 0 → ((∀x.P x → P (s x)) → ∀x.P x)

Furthermore assume two axioms defining a:

∀y.0 + y = y

and
∀xy.(s x) + y = s (x+ y).

The conjecture we wish to prove is ∀x.∀y.x+ y = y + x.
If we were proving this in an interactive theorem prover, a reasonable approach is

to prove two lemmas by induction:

∀x.x+ 0 = x

and
∀xy.x+ (s y) = s (x+ y)

and then use these two lemmas to prove commutativity. An advisor might suggest these
lemmas as cut formulas. The current hard-coded advisor does not do this, but instead
inlines the subinductions when required.

The hard-coded advisor recognizes the induction axiom for a type ι, a constant 0
and a unary function s and remembers it. If it then sees a proposition of the form
¬∀y.c + y = y + c being processed, it remembers the addition symbol and the name
c (an eigenvariable in this particular proof). After seeing both the induction axiom
and the negation of the half quantified commutativity formula, the hard-coded advisor
begins to make the following suggested instantiations of type ι → o: λy.c + y = y + c

and λx.x + 0 = x. It also suggests instantiations 0 and c of type ι. After this the
advisor begins to adapt the priorities of propositions, instantiations and confrontations
(equational steps) to keep the search as directed as possible.

After instantiating the induction property with λy.c + y = y + c, a subformula
¬∀x.c+x = x+c → c+(s x) = (s x)+c will eventually be processed. As a consequence
an eigenvariable, which we call d, will be generated. After this eigenvariable has been
generated a new higher-order instantiation λx.x + (s d) = s (x + d) (corresponding to
the other subinduction) will be suggested, along with instantiations d and s d of base
type. Along the way certain other eigenvariables are generated and must be suggested
as instantiations.

For the most part the advisor proceeds by giving high priority to formulas it ex-
plicitly recognizes. However, if the formula is an equation or disequation where each
side has at most one addition operator, at most two occurrences of s and at most two



occurrences of 0, then it is also given high priority. Instantiations are given high priority
if they either names (including eigenvariables and 0) or the successor of a name.3

Once this is done, mode1 with help from the advisor can prove the theorem in about
a second.

time satallax -m mode1 -advisorsocket 2332 addcom.p

Connected to 2332

% SZS status Theorem

% Mode: mode1

% Inferences: 2600

real 0m1.208s

user 0m0.108s

sys 0m0.116s

Proofs by induction are typically hard for higher-order automated theorem provers,
but this case in which three inductions must be done is far out of reach of current
procedures. It’s conceivable that one could have a collection of induction proofs easy
enough for Satallax to do, but it is unclear how it could learn from those proofs to build
an advisor capable of directing Satallax to prove commutativity of addition.

4 Conclusion

The hard-coded advisor demonstrates that it is possible to take information Satallax
generates during search and direct it in a way to obtain proofs that are otherwise out
of reach. The real challenge is to use machine learning to automatically generate the
advisor using data from successful searches.

In the three examples, it is difficult to see how this could be done. Fortunately, this
is more of a challenge for machine learning than automated theorem proving, so it is
not necessary for me to see how it could be done. I can simply pose it as a challenge.

References

[1] Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System Description:
TPS: A Theorem Proving System for Type Theory. In Automated Deduction -

CADE-17, volume 1831 of Lecture Notes in Artificial Intelligence, pages 164–169.
Springer-Verlag, 2000.

[2] Chad E. Brown. Reducing higher-order theorem proving to a sequence of SAT
problems. Journal of Automated Reasoning, pages 57–77, 2013.

3Keep in mind there is a difference between the advisor suggesting an instantiation and the advisor
adapting priorities of an instantiation Satallax has generated.



[3] Library Committee. Boolean properties of sets — definitions, April 2002.


	Replacement Implies Separation
	Injective Cantor
	Commutativity of Addition
	Conclusion

