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Internal Guidance of Reasoning – General Setting

• How do we generally guide reasoning by ML?

• We have a reasoning task and a reasoning engine (algorithm)

• The engine is capable of drawing (many) correct logical

inferences in a proof state

• We want to guide the application of the inferences by ML
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Saturation-style Theorem Proving

• Previous lecture: strong inference engine called Vampire

• Produces proofs by working in a refutational setting:

• Turning T $ C into T , C $ K

• Then saturating the resulting set of clauses in a fair way

• Using the given clause loop (ANL loop - Argonne, Otter)

• We have Processed (P) and Unprocessed (U) clauses

1. Pick a good given clause from U

2. Do all its inferences with the clauses in P

3. Put the resulting clauses into U

4. GOTO 1
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Remarks on ML in Saturation-style Theorem Proving

• Inference guidance done by learning given clause selection

• We learn what are good/bad given clauses for the problem

• Clauses characterized by engineered or learned features (NNs)

• The problem characterization can be fixed (or even implicit)
for all steps, e.g.:

• just the (feature/neural) characterization of the conjecture

• or also an important axiom (assumption/hypothesis)

• or all axioms (if we believe they are all important)

• or all weighted by their predicted importance

• Or the problem characterization can be dynamic

• E.g. based on various characteristics of the inferred clauses

• Or using partial matching of previous proofs

• Not in this talk, easier to do for tableau provers (coming next)
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The Given Clause Loop Paradigm

Problem representation

• first order clauses (ex. “x “ 0_ Ppf px , xqq”)

• posed for proof by contradiction

Given an initial set C of clauses and a set of inference rules, find a

derivation of the empty clause (for example, by the resolution of

clauses with conflicting literals L and  L).
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Basic Loop

Proc = {}

Unproc = all available clauses

while (no proof found)

{

select a given clause C from Unproc

move C from Unproc to Proc

apply inference rules to C and Proc

put inferred clauses to Unproc

}
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Clause Selection Heuristics in E Prover

• E Prover has several pre-defined clause weight functions.

(and others can be easily implemented)

• Each weight function assigns a real number to a clause.

• Clause with the smallest weight is selected.
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E Prover Strategy

• E strategy = E parameters influencing proof search

(term ordering, literal selection, clause splitting, . . . )

• Weight function gives the priority to a clause.

• Selection by several priority queues in a round-robin way

(10 * ClauseWeight1(10,0.1,...),

1 * ClauseWeight2(...),

20 * ClauseWeight3(...))
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Enigma Basics

• Idea: Use fast linear classifier to guide given clause selection!

• ENIGMA stands for. . .
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Enigma Basics

• Idea: Use fast linear classifier to guide given clause selection!

• ENIGMA stands for. . .

Efficient learNing-based Inference Guiding MAchine
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LIBLINEAR: Linear Classifier

• LIBLINEAR: open source library1

• input: positive and negative examples (float vectors)

• output: model („ a vector of weights)

• evaluation of a generic vector: dot product with the model

1http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Clauses as Feature Vectors

Consider the literal as a tree and simplify (sign, vars, skolems).

“

f

x y

g

sko1 sko2

x

Ñ

‘

“

f

f f

g

d d

f
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Clauses as Feature Vectors

Features are descending paths of length 3 (triples of symbols).
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Clauses as Feature Vectors

Collect and enumerate all the features. Count the clause features.

‘

“

f

f f

g

d d

f

# feature count

1 (‘,=,a) 0
...

...
...

11 (‘,=,f) 1

12 (‘,=,g) 1

13 (=,f,f) 2

14 (=,g,d) 2

15 (g,d,f) 1
...

...
...
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Clauses as Feature Vectors

Take the counts as a feature vector.
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Enigma Model Construction

1. Collect training examples from E runs (useful/useless clauses).

2. Enumerate all the features (π :: feature Ñ int).

3. Translate clauses to feature vectors.

4. Train a LIBLINEAR classifier (w :: float|dompπq|).

5. Enigma model is E “ pπ,wq.
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Given Clause Selection by Enigma

We have Enigma model E “ pπ,wq and a generated clause C .

1. Translate C to feature vector ΦC using π.

2. Compute prediction:

weightpC q “

$

&

%

1 iff w ¨ ΦC ą 0

10 otherwise
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Enigma Given Clause Selection

• We have implemented Enigma weight function in E.

• Enigma model can be used alone to select a given clause:

(1 * Enigma(E,δ))

• or in combination with other E weight functions:

(23 * Enigma(E,δ),

3 * StandardWeight(...),

20 * StephanWeight(...))
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Conjecture Features

• Enigma classifier E is independent on the goal conjecture!

• Improvement: Extend ΦC with goal conjecture features.

• Instead of vector ΦC take vector pΦC ,ΦG q.
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Horizontal Features

Function applications and arguments top-level symbols.

‘

“

f

f f

g

d d

f

# feature count

1 (‘,=,a) 0
...

...
...

100 “ pf , gq 1

101 f pf,fq 1

102 gpd,dq 1

103 dpfq 1
...

...
...
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Static Clause Features

For a clause, its length and the number of pos./neg. literals.

‘

“

f

f f

g

d d

f

# feature count/val

103 dpfq 1
...

...
...

200 len 9

201 pos 1

202 neg 0
...

...
...
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Static Symbol Features

For each symbol, its count and maximum depth.

‘

“

f

f f

g

d d

f

# feature count/val

202 neg 0
...

...
...

300 #‘pf q 1

301 #apf q 0
...

...
...

310 %‘pfq 4

311 %apfq 0
...

...
...
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Balancing Training Data

• Training data are uneven.

• Usually we have more negative examples (cca 10 times).

• Previously: Repeat positive examples 10 times.
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Accuracy-based Balancing

1. Collect training data.

2. Create classifier E “ pπ,wq.
3. Compute prediction accuracy on the training data (using w).

4. If pacc` ą acc´q then finish.

5. Repeat misclassified positive clauses in the training data.

6. Goto 2.
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XGBoost Tree Boosting System

• Idea: Use decision trees instead of linear classifier.

• Gradient boosting library XGBoost.2

• Provides C/C++ API and Python (and others) interface.

• Uses exactly the same training data as LIBLINEAR.

• We use the same Enigma features.

• No need for training data balancing.

2http://xgboost.ai
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XGBoost Models

• An XGBoost model consists of a set of decision trees.

• Leaf scores are summed and translated into a probability.
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Experiments Setup

• MPTP 2078: FOL translation of selected articles from Mizar

Mathematical Library (MML)

• Leaf scores are summed and translated into a probability.

• Fix E strategy S.
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TPR/TNR: True Positive/Negative Rates

• Training Accuracy:

Mlin Mtree Mnn

TPR 90.54 % 99.36 % 97.82 %

TNR 83.52 % 93.32 % 94.69 %

• Testing Accuracy:

Mlin Mtree Mnn

TPR 80.54 % 83.35 % 82.00 %

TNR 62.28 % 72.60 % 76.88 %
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Models ATP Performance

• S with model M alone (d) or combined 50-50 (‘) in 10s

S S dMlin S dMtree S dMnn

solved 1086 1115 1231 1167

unique 0 3 10 3

S` 0 +119 +155 +114

S´ 0 -90 -10 -33

S S ‘Mlin S ‘Mtree S ‘Mnn

solved 1086 1210 1256 1197

unique 0 7 15 2

S` 0 +138 +173 +119

S´ 0 -14 -3 -8
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Thank you.

Questions?
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