ENIGMA Given Clause Guidance

Karel Chvalovský¹ Jan Jakubův¹ Martin Suda¹ Josef Urban¹ Machine Learning and Reasoning, 22nd March 2019

¹Czech Technical University in Prague, Czech Republic

Chvalovský et al.

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

Internal Guidance of Reasoning – General Setting

- How do we generally guide reasoning by ML?
- We have a *reasoning task* and a *reasoning engine* (algorithm)
- The engine is capable of drawing (many) correct logical inferences in a *proof state*
- We want to guide the application of the inferences by ML

Saturation-style Theorem Proving

- Previous lecture: strong inference engine called Vampire
- Produces proofs by working in a *refutational setting*:
- Turning $T \vdash C$ into $T, \neg C \vdash \bot$
- Then saturating the resulting set of clauses in a fair way
- Using the given clause loop (ANL loop Argonne, Otter)
- We have Processed (P) and Unprocessed (U) clauses
 - 1. Pick a good given clause from U
 - 2. Do all its inferences with the clauses in P
 - 3. Put the resulting clauses into U
 - 4. GOTO 1

Remarks on ML in Saturation-style Theorem Proving

- Inference guidance done by learning given clause selection
- $\bullet\,$ We learn what are good/bad given clauses for the problem
- Clauses characterized by engineered or learned features (NNs)
- The problem characterization can be *fixed* (or even implicit) for all steps, e.g.:
 - just the (feature/neural) characterization of the conjecture
 - or also an important axiom (assumption/hypothesis)
 - or all axioms (if we believe they are all important)
 - or all weighted by their predicted importance
- Or the problem characterization can be dynamic
- E.g. based on various characteristics of the inferred clauses
- Or using partial matching of previous proofs
- Not in this talk, easier to do for tableau provers (coming next)

Chvalovský et al.

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

Problem representation

- first order clauses (ex. " $x = 0 \lor \neg P(f(x, x))$ ")
- posed for proof by contradiction

Given an initial set *C* of clauses and a set of inference rules, find a derivation of the *empty clause* (for example, by the resolution of clauses with conflicting literals *L* and $\neg L$).

Chvalovský et al.

```
Proc = \{\}
Unproc = all available clauses
while (no proof found)
{
   select a given clause C from Unproc
   move C from Unproc to Proc
   apply inference rules to C and Proc
   put inferred clauses to Unproc
}
```

Clause Selection Heuristics in E Prover

- E Prover has several pre-defined clause weight functions. (and others can be easily implemented)
- Each weight function assigns a real number to a clause.
- Clause with the smallest weight is selected.

- E strategy = E parameters influencing proof search (term ordering, literal selection, clause splitting, ...)
- Weight function gives the priority to a clause.
- Selection by several priority queues in a round-robin way
 - (10 * ClauseWeight1(10,0.1,...),
 - 1 * ClauseWeight2(...),
 - 20 * ClauseWeight3(...))

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for. . .

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for...

Efficient learNing-based Inference Guiding MAchine

- LIBLINEAR: open source library¹
- input: positive and negative examples (float vectors)
- **output:** model (~ a vector of weights)
- evaluation of a generic vector: dot product with the model

¹http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Chvalovský et al. ENIGMA Given Clause Guidance

Consider the literal as a tree and simplify (sign, vars, skolems).

Features are descending paths of length 3 (triples of symbols).

Clauses as Feature Vectors

Collect and enumerate all the features. Count the clause features.

	#	feature	count
\oplus	1	(⊕,=,a)	0
=	÷	÷	:
	11	(⊕,=,f)	1
f g	12	(⊕,=,g)	1
	13	(=,f,⊛)	2
	14	(=,g,⊙)	2
*	15	(g,⊙,⊛)	1
	÷	÷	÷

Clauses as Feature Vectors

Take the counts as a feature vector.

#	feature	count
1	(⊕,=,a)	0
÷	:	:
11	(⊕,=,f)	1
12	(⊕,=,g)	1
13	(=,f,*)	2
14	(=,g,⊙)	2
15	(g,⊙,⊛)	1
÷	÷	:
	# 1 11 12 13 14 15 :	# feature 1 $(\oplus,=,a)$: : 11 $(\oplus,=,f)$ 12 $(\oplus,=,g)$ 13 $(=,f,\circledast)$ 14 $(=,g,\odot)$ 15 (g,\odot,\circledast) : :

- 1. Collect training examples from E runs (useful/useless clauses).
- 2. Enumerate all the features (π :: feature \rightarrow int).
- 3. Translate clauses to feature vectors.
- 4. Train a LIBLINEAR classifier ($w :: float^{|dom(\pi)|}$).
- 5. Enigma model is $\mathcal{E} = (\pi, w)$.

We have Enigma model $\mathcal{E} = (\pi, w)$ and a generated clause C.

- 1. Translate C to feature vector Φ_C using π .
- 2. Compute prediction:

weight(C) =
$$\begin{cases} 1 & \text{iff } w \cdot \Phi_C > 0 \\ 10 & \text{otherwise} \end{cases}$$

- We have implemented Enigma weight function in E.
- Enigma model can be used alone to select a given clause:

 $(1 * \text{Enigma}(\mathcal{E}, \delta))$

• or in combination with other E weight functions:

(23 * Enigma(
$$\mathcal{E}, \delta$$
),
3 * StandardWeight(...),
20 * StephanWeight(...))

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

- $\bullet\,$ Enigma classifier ${\cal E}$ is independent on the goal conjecture!
- Improvement: Extend Φ_C with goal conjecture features.
- Instead of vector Φ_C take vector (Φ_C, Φ_G) .

Horizontal Features

Function applications and arguments top-level symbols.

	#	feature	count
\oplus	1	(⊕,=,a)	0
=	÷	:	:
f g	100	= (f,g)	1
\sim \sim	101	$f(\circledast,\circledast)$	1
* * • •	102	$g(\odot,\odot)$	1
	103	$\odot(\circledast)$	1
(*)	:	:	:

For a clause, its length and the number of pos./neg. literals.

\oplus	#	feature	count/val
	103	$\odot(\circledast)$	1
\frown	÷	÷	:
f g	200	len	9
	201	pos	1
	202	neg	0
*	÷	÷	:

Static Symbol Features

For each symbol, its count and maximum depth.

	#	feature	count/val
\oplus	202	neg	0
=	÷	:	:
	300	$\#_{\oplus}(f)$	1
f g	301	$\#_{\ominus}(f)$	0
\sim \sim	÷	÷	:
	310	$\%_{\oplus}(\circledast)$	4
*	311	$\%_{\ominus}(\circledast)$	0
	:	:	:

Static Symbol Features

For each symbol, its count and maximum depth.

	#	feature	count/val
\oplus	202	neg	0
=	÷	:	:
	300	$\#_{\oplus}(f)$	1
f g	301	$\#_{\ominus}(f)$	0
	÷	÷	:
	310	$\%_{\oplus}(\circledast)$	4
*	311	$\%_{\ominus}(\circledast)$	0
	:	:	:

Balancing Training Data

- Training data are uneven.
- Usually we have more negative examples (cca 10 times).
- Previously: Repeat positive examples 10 times.

- 1. Collect training data.
- 2. Create classifier $\mathcal{E} = (\pi, w)$.
- 3. Compute prediction accuracy on the training data (using w).
- 4. If $(acc^+ > acc^-)$ then finish.
- 5. Repeat misclassified positive clauses in the training data.
- 6. **Goto** 2.

- Idea: Use decision trees instead of linear classifier.
- Gradient boosting library XGBoost.²
- Provides C/C++ API and Python (and others) interface.
- Uses exactly the same training data as LIBLINEAR.
- We use the same Enigma features.
- No need for training data balancing.

Chvalovský et al.

²http://xgboost.ai

XGBoost Models

- An XGBoost model consists of a set of decision trees.
- Leaf scores are summed and translated into a probability.

Recap & General Intro

ATPs & Given Clauses

Enigma Models

Enhancing Enigma

Experiments

Chvalovský et al.

- MPTP 2078: FOL translation of selected articles from Mizar Mathematical Library (MML)
- Leaf scores are summed and translated into a probability.
- Fix E strategy \mathcal{S} .

TPR/TNR: True Positive/Negative Rates

• Training Accuracy:

	$\mathcal{M}_{\mathrm{lin}}$	$\mathcal{M}_{\rm tree}$	$\mathcal{M}_{\mathrm{nn}}$
TPR	90.54 %	99.36 %	97.82 %
TNR	83.52 %	93.32 %	94.69 %

• Testing Accuracy:

	$\mathcal{M}_{\mathrm{lin}}$	$\mathcal{M}_{\mathrm{tree}}$	$\mathcal{M}_{\mathrm{nn}}$
TPR	80.54 %	83.35 %	82.00 %
TNR	62.28 %	72.60 %	76.88%

Models ATP Performance

• ${\mathcal S}$ with model ${\mathcal M}$ alone (\odot) or combined 50-50 (\oplus) in 10s

	S	$\mathcal{S} \odot \mathcal{M}_{ ext{lin}}$	$\mathcal{S} \odot \mathcal{M}_{ ext{tree}}$	$\mathcal{S} \odot \mathcal{M}_{\mathrm{nn}}$
solved	1086	1115	1231	1167
unique	0	3	10	3
$\mathcal{S}+$	0	+119	+155	+114
$\mathcal{S}-$	0	-90	-10	-33
	S	$\mathcal{S} \oplus \mathcal{M}_{ ext{lin}}$	$\mathcal{S} \oplus \mathcal{M}_{ ext{tree}}$	$\mathcal{S} \oplus \mathcal{M}_{\mathrm{nn}}$
solved	<i>S</i> 1086	$\mathcal{S} \oplus \mathcal{M}_{ ext{lin}}$ 1210	$\mathcal{S} \oplus \mathcal{M}_{ ext{tree}}$ 1256	$\mathcal{S} \oplus \mathcal{M}_{nn}$ 1197
solved unique	S 1086 0	$\mathcal{S} \oplus \mathcal{M}_{ ext{lin}}$ 1210 7	$\mathcal{S} \oplus \mathcal{M}_{ ext{tree}}$ 1256 15	$\begin{array}{c} \mathcal{S} \oplus \mathcal{M}_{nn} \\ \hline 1197 \\ 2 \end{array}$
solved unique $\mathcal{S}+$	S 1086 0 0	$\mathcal{S} \oplus \mathcal{M}_{ ext{lin}}$ 1210 7 +138	$\begin{array}{c} \mathcal{S} \oplus \mathcal{M}_{\text{tree}} \\ 1256 \\ 15 \\ +173 \end{array}$	$\begin{array}{c} \mathcal{S} \oplus \mathcal{M}_{nn} \\ \hline 1197 \\ 2 \\ +119 \end{array}$

Chvalovský et al.

Some References

- K. Chvalovsky, J. Jakubuv, M. Suda, J. Urban: ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E. CoRR abs/1903.03182 (2019)
- Jan Jakubuv, Josef Urban: Enhancing ENIGMA Given Clause Guidance. CICM 2018: 118-124
- J. Jakubuv, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine. CICM 2017: 292-302
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- Christoph Goller: Learning search-control heuristics for automated deduction systems with folding architecture networks. ESANN 1999: 45-50
- Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:18711874, 2008.
- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, pages 785794. ACM, 2016.
- R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality through recursive matrix-vector spaces. EMNLP-CoNLL 2012: 12011211

Chvalovský et al.

Thank you.

Questions?

Chvalovský et al.