
Neural guidance in E



Using neural networks

I we can use neural networks (NNs) directly on our
hand-crafted feature vectors,

I however, we can also extract features using NNs,
I ideally: we want to represent objects semantically not

syntactically,
I our representation: terms, literals, and clauses are represented

by vectors

𝑎 − (𝑏 + 𝑐) is represented by 𝑣 ∈ R𝑛,

I note that our model was designed to be reasonably close to
the previous approach (not as smart as possible) and all these
things are only initial steps. . .
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Vector representations of terms (very simplified example)
Objective here: equal terms should be as close as possible

In our case the problem is much more complex, e.g., we can have
simultaneously two predicates representing syntactic and semantic
equivalence, respectively. image source: Allamanis et al. 2017 2 / 12



How to obtain these representations?

I we can exploit compositionality and the tree structure of our
objects

+
√

+

𝑎 𝑏

+

𝑏 𝑐

term representation
𝑎 R𝑛

𝑏 R𝑛

𝑐 R𝑛

√ R𝑛 → R𝑛

+ R𝑛 × R𝑛 → R𝑛

(for simplicity we assume that everything lives in R𝑛)
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Notes on compositionality

I in many cases it is clear how to produce a more complex
object from simpler objects, but

𝑓(𝑥, 𝑦) =
{︃

1 if 𝑥 halts on 𝑦,

0 otherwise.

I even constants can be complex, e.g., { 𝑥 : ∀𝑦(𝑓(𝑥, 𝑦) = 1) },
I very special objects are variables and Skolem functions

(constants),
I note that different types of objects can live in different spaces

as long as we can connect things together

4 / 12



Recursive NNs
I popularized by Socher, Lin, et al. 2011 in NLP,
I unlike feed-forward NNs do not have a static structure, but

the structure is different for different inputs

Our representation
I a constant is represented by a learned vector (embedding),
I a variable is represented by a learned vector (embedding),

I for simplicity (and as in the previous part) all variables are
represented by one vector and we treat Skolem symbols
similarly

I a function symbol 𝑓 is represented by a learned function (NN)
𝑣𝑓 : R𝑛 × · · · × R𝑛⏟  ⏞  

𝑘-times

→ R𝑛, where 𝑘 is the arity of 𝑓 ,

I a predicate symbol 𝑃 is represented by a learned function
(NN) 𝑣𝑃 : R𝑛 × · · · × R𝑛⏟  ⏞  

𝑘-times

→ R𝑛, where 𝑘 is the arity of 𝑃 ,

I note that we treat equality as a learned binary predicate
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Clauses and conjectures
I we represent negation as a learned unary operation,
I we can represent disjunction similarly, but a clause is more like

a sequence (set) of literals

Recurrent NNs (RNNs)

I consume sequences of vectors,
I a representation of a clause is obtained by a RNN (Cl) from

the representations of literals in the clause,
I a representation of a conjecture is obtained by a RNN (Conj)

from the representations of clauses in the conjecture,

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM and GRU
I in principle RNNs can learn long dependencies,
I Long short-term memory (LSTM) was developed to help with

vanishing and exploding gradients in vanilla RNNs,
I Gated recurrent unit (GRU) is a “simplified” LSTM,
I many variants — bidirectional, stacked, . . .

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Final layer

I input: the represenations of a conjecture, which we want to
prove, and a clause, which we want to evaluate

I output: two real numbers
I we can normalize them into a probability distribution,
I or just say that the clause is a good/bad given clause based on

them (that is what we do now)

I note that it does not have a direct access to the properties of
clauses like length, age, #variables
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Current neural model parameters

I 𝑛 = 64,
I function and predicate symbols are represented by a linear

layer and ReLU6 (min(max(0, 𝑥), 6)),
I Cl and Conj are LSTMs (GRUs are faster),
I the output vector of Conj has length 𝑚 = 16,
I the final layer is a sequence of linear, ReLU, linear, ReLU, and

linear layers (R𝑛+𝑚 → R
𝑛
2 → R2)

I rare symbols are grouped together — we can loosely speaking
obtain a general constant, binary function, . . .
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Various possible modifications

I too many to even list them. . .
I our representation of variables and Skolem symbols is clearly

an oversimplification and can be improved in various ways,
I note that different types of objects can be represented by

vectors of different lengths and different function and
predicate symbols can have very different representations
(NNs),

I we can use an apply function instead (even recurrent one
mainly to improve the representations of rare or out of
vocabulary symbols),

I in NLP explicit typing helps, see Socher, Huval, et al. 2012,
I it is also possible to take into account already selected (or

even generated) clauses
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Optimizations

Training
I we use minibatches, where we group together examples that

share the same conjecture and we cache all the
representations obtained in one batch

ATP evaluation
I all the computed representations of objects are cached during

a proof search and hence there is no need to recompute them
again,

I the most interesting thing about all this is that this whole
neural approach really works even though it has non-trivial
overhead and caching helps a lot
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