Neural representations of formulae A brief introduction

Karel Chvalovský

CIIRC CTU

Introduction

- the goal is to represent formulae by vectors (as good as possible)
 - we have seen such a representation using hand-crafted features based on tree walks, ...
 - neural networks have proved to be very good in extracting features in various domains—image classification, NLP, ...
- the selection of presented models is very subjective and it is a rapidly evolving area
- statistical approaches are based on the fact that in many cases we can safely assume that we deal only with the formulae of a certain structure
 - we can assume there is a distribution behind formulae
 - hence it is possible to take advantage of statistical regularities

Classical representations of formulae

- formulae are syntactic objects
- we use different languages based on what kind of problem we want to solve and we usually prefer the weakest system that fits our problem
 - classical / non-classical
 - propositional, FOL, HOL, ...
- there are various representations
 - standard formulae
 - normal forms
 - circuits
- there are even more types of proofs and they use different types of formulae
- it really matters what we want to do with them

Example—SAT

we have formulae in CNF

we have reasonable algorithms for them

they can also simplify some things

note that they are not unique, e.g.,

$$(p \to q) \land (q \to r) \land (r \to p)$$

is equivalent to both

$$(\neg p \lor q) \land (\neg q \lor r) \land (\neg r \lor p)$$

and

$$(\neg p \lor r) \land (\neg q \lor p) \land (\neg r \lor q)$$

 it is trivial to test formulae in DNF, but transforming a formula into DNF can lead to an exponential increase in the size of the formula

Semantic properties

- we want to capture the meaning of terms and formulae that is their semantic properties
- however, a representation should depend on the property we want to test
 - ▶ a representation of $(x y) \cdot (x + y)$ and $x^2 y^2$ should take into account whether we want to apply it on a binary predicate P which says
 - they are equal polynomials
 - they contain the same number of pluses and minuses
 - they are both in a normal form

Feed-forward neural networks

- in our case we are interested in supervised learning
- it is a function $f : \mathbb{R}^n \to \mathbb{R}^m$
- they are good in extracting features from the data

image source: PyTorch

Fully-connected NNs

NN with two hidden layers

Activation functions

- they produce non-linearities, otherwise only linear transformations are possible
- they are applied element-wise

Common activation functions

- ReLU $(\max(0, x))$ • tanh $(\frac{e^x - e^{-x}}{e^x + e^{-x}})$
- ▶ sigmoid $\left(\frac{1}{1+e^{-x}}\right)$

Note that tanh(x) = 2sigmoid(2x) - 1 and ReLU is non-differentiable at zero.

Learning of NNs

- initialization is important
- we define a loss function
 - the distance between the computed output and the true output
- we want to minimize it by gradient descent (backpropagation using the chain rule)

optimizers—plain SGD, Adam, ...

image source: Science

NNs and propositional logic

- already Pitts in his 1943 paper discusses the representation of propositional formulae
- it is well known that connectives like conjunction, disjunction, and negation can be computed by a NN
- every Boolean function can be learned by a NN
 - XOR requires a hidden layer
- John McCarthy: NNs are essentially propositional

Bag of words

we represent a formula as a sequence of tokens (atomic objects, strings with a meaning) where a symbol is a token

$$p \to (q \to p) \implies X = \langle p, \to, (, q, \to, p,) \rangle$$
$$P(f(0, \sin(x))) \implies X = \langle P, (, f, (, \sin, (, x,),),) \rangle$$

the simplest approach is to treat it as a bag of words (BoW)

- tokens are represented by learned vectors
- linear BoW is $\operatorname{emb}(X) = \frac{1}{|X|} \sum_{x \in X} \operatorname{emb}(x)$
- we can "improve" it by the variants of term frequency-inverse document frequency (tf-idf)
- it completely ignores the order of tokens in formulae

▶ $p \rightarrow (q \rightarrow p)$ becomes equivalent to $p \rightarrow (p \rightarrow q)$

 even such a simple representation can be useful, e.g., in Balunovic, Bielik, and Vechev 2018, they use BoW for guiding an SMT solver

Learning embeddings for BoW

say we want a classifier to test whether a formula X is TAUT

- a very bad idea for reasonable inputs
- no more involved computations (no backtracking)
- we have embeddings in \mathbb{R}^n
- our classifier is a neural network MLP: $\mathbb{R}^n \to \mathbb{R}^2$
 - if X is TAUT, then we want $MLP(emb(X)) = \langle 1, 0 \rangle$
 - if X is not TAUT, then we want $MLP(emb(X)) = \langle 0, 1 \rangle$
- we learn the embeddings of tokens
 - missing and rare symbols
- \blacktriangleright note that for practical reasons it is better to have the output in \mathbb{R}^2 rather than in \mathbb{R}

Recurrent NNs (RNNs)

- standard feed-forward NNs assume the fixed-size input
- we have sequences of tokens of various lengths
- we can consume a sequence of vectors by applying the same NN again and again and taking the hidden states of the previous application also into account
- various types
 - hidden state—linear, tanh
 - output—linear over the hidden state

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problems with RNNs

- hard to parallelize
- in principle RNNs can learn long dependencies, but in practice it does not work well
 - say we want to test whether a formula is TAUT

LSTM and GRU

Long short-term memory (LSTM) was developed to help with vanishing and exploding gradients in vanilla RNNs

a cell state

a forget gate, an input gate, and an output gate

- Gated recurrent unit (GRU) is a "simplified" LSTM
 - a single update gate (forget+input) and state (cell+hidden)
- many variants bidirectional, stacked, ...

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ $\,$

Convolutional networks

- very popular in image classification—easy to parallelize
- we compute vectors for every possible subsequence of a certain length
 - zero padding for shorter expressions
- max-pooling over results—we want the most important activation
- character-level convolutions—premise sel. (Irving et al. 2016)
 - improved to the word-level by "definition"-embeddings

image source: Irving et al. 2016

Convolutional networks II.

word level convolutions—proof guidance (Loos et al. 2017)

WaveNet (Oord et al. 2016) — a hierarchical convolutional network with dilated convolutions and residual connections

image source: Oord et al. 2016

Recursive NN (TreeNN)

- we have seen them in Enigma
- we can exploit compositionality and the tree structure of our objects and use recursive NNs (Goller and Kuchler 1996)

Syntax tree

Network architecture

TreeNN (example)

- leaves are learned embeddings
 - both occurrences of b share the same embedding
- other nodes are NNs that combine the embeddings of their children
 - both occurrences of + share the same NN
 - we can also learn one apply function instead
 - functions with many arguments can be treated using pooling, RNNs, convolutions etc.

Notes on compositionality

- we assume that it is possible to "easily" obtain the embedding of a more complex object from the embeddings of simpler objects
- it is usually true, but

$$f(x,y) = \begin{cases} 1 & \text{if } x \text{ halts on } y, \\ 0 & \text{otherwise.} \end{cases}$$

- even constants can be complex, e.g., $\{x : \forall y(f(x,y) = 1)\}$
- very special objects are variables and Skolem functions (constants)
- note that different types of objects can live in different spaces as long as we can connect things together

TreeNNs

advantages

- powerful and straightforward—in Enigma we model clauses in FOL
- caching
- disadvantages
 - quite expensive to train
 - usually take syntax too much into account
 - hard to express that, e.g., variables are invariant under renaming

▶ PossibleWorldNet (Evans et al. 2018) for propositional logic

- randomly generated "worlds" that are combined with the embeddings of atoms
- we evaluate the formula against many such worlds

EqNet (Allamanis et al. 2017)

 the goal is to learn semantically equivalent representations (equal terms should be as close as possible, i.e., the k-nearest neighbors algorithm)

a - (b - c)

mage source: Allamanis et al. 2017

EqNet

a standard TreeNN improved by

- normalization (embeddings have unit norm)
- regularization (subexpression autoencoder)
 - aiming for abstraction and reversibility
 - denoising AE randomly turn some weights to zero

Symbolic Expression Parse Tree

image source: Allamanis et al. 2017

Tree-LSTM (Tai, Socher, and Manning 2015)

- gating vectors and memory cell updates are dependent on the states of possibly many child units
- it contains a forget gate for each child
 - child-sum or at most N ordered children

image source: Chris Olah

Bottom-up recursive model

Say we want to test whether a propositional formula is TAUT. We compute the embeddings of more complex objects from the embeddings of simple objects. We learn

- the embeddings of atoms
- NNs for logical connectives (combine)

Top-down recursive model

We change the order of propagation; the embedding of the property is propagated to subformulae. We learn

- the embedding of the property (tautology)
- NNs for logical connectives (split)

Top-down model for $F=(p\rightarrow q)\vee (q\rightarrow p)$

We train the representations of w, c_i , RNN-Var, RNN-All, and Final. These components are shared among all the formulae. For a single formula we produce a model (neural network) recursively from them.

$\overbrace{\text{Vectors (in } \mathbb{R}^d):}^{\text{Top-down model}}$

- $\blacktriangleright w$ is the input embedding of the property (tautology)
- ▶ p₁, p₂, q₁, and q₂ represent the individual occurrences of atoms in F, where p₁ corresponds to the first occurrence of the atom p in F
- p and q represent all the occurrences of p and q in F, respectively
- $out \in \mathbb{R}^2$ gives true/false

Neural networks:

- $\blacktriangleright\ c_{\vee}$ and c_{\rightarrow} represent binary connectives \vee and \rightarrow , respectively
 - ▶ they are functions $\mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$, because \lor and \to are binary connectives
- RNN-Var aggregates vectors corresponding to the same atom
- **RNN-All** aggregates the outputs of RNN-Var components
- Final is a final decision layer

Properties of top-down models

Top-down models

- are insensitive to the renaming of atoms
- can evaluate unseen atoms and the number of distinct atoms that can occur in a formula is only bounded by the ability of RNN-All to correctly process the outputs of RNN-Var
- work quite well for some sets of formulae
- make it harder to interpret the produced representations
- can be probably reasonably extended to FOL, but it more or less leads to more complicated structures and hence graph NNs (GNNs)

FormulaNet (Wang et al. 2017)

we represent higher-order formulae by graphs (GNNs)

image source: Wang et al. 2017

FormulaNet — embeddings

- ▶ init is a one-hot repr. for every symbol $(f, \forall, \land, VAR, ...)$
- F_I and F_O are update functions for incoming and outgoing edges, respectively
- F_P combines F_I and F_O
- ▶ F_R, F_L, F_H are introduced to preserve the order of arguments (otherwise f(x, y) is the same thing as f(y, x))
 - ▶ $F_R(F_L)$ is a treelet (triples) where v is the right (left) child
 - F_H is a treelet where v is the head
- updates are done in parallel
- the final representation of the formula is obtained by max-pooling over the embeddings of nodes

image source: Wang et al. 2017

NeuroSAT (Selsam, Lamm, et al. 2018)

- the goal is to decide whether a prop. formula in CNF is SAT
- two types of nodes with embeddings
 - literals
 - clauses
- two types of edges
 - between complementary literals
 - between literals and clauses
- we iterate message passing in two stages (back and forth)
 - we use two LSTMs for that
- invariant to the renaming of variables, negating all literals, the permutations of literals and clauses

image source: Selsam, Lamm, et al. 2018

NeuroSAT voting

- we have a function vote that computes for every literal whether it votes SAT (red) or UNSAT (blue)
- all votings are averaged and the final result is produced
- it is sometimes possible to read an assignment—darker points
- it is sometimes possible to read an UNSAT core, but see NeuroCore (Selsam and Bjørner 2019)

image source: Selsam, Lamm, et al. 2018

Circuit-SAT (Amizadeh, Matusevych, and Weimer 2019)

- we have a circuit (DAG) instead of a CNF
- ► they use smooth min, max (fully differentiable w.r.t to all inputs), and 1 x functions for logical operators
- GRUs are used for updates

image source: Amizadeh, Matusevych, and Weimer 2019

Conclusion

we have seen various approaches how to represent formulae

- it really matters what we want to do with our representations (property)
- there are many other relevant topics
 - attention mechanisms
 - popular for aggregating sequences
 - sensitive to hyperparameters
 - approaches based on ILP
 - usually we ground the problem to make it propositional
- maybe it is even better to formulate our problem directly in a language friendly to NNs and not to use classical formulae...
 - non-classical logics

Bibliography I

- Allamanis, Miltiadis et al. (2017). "Learning Continuous Semantic Representations of Symbolic Expressions". In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 80-88. URL: http://proceedings.mlr.press/v70/allamanis17a.html.
- Amizadeh, Saeed, Sergiy Matusevych, and Markus Weimer (2019). "Learning To Solve Circuit-SAT: An Unsupervised Differentiable Approach". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=BJxgz2R9t7.
- Balunovic, Mislav, Pavol Bielik, and Martin Vechev (2018). "Learning to Solve SMT Formulas". In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., pp. 10337-10348. URL: http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf.
- Chvalovský, Karel (2019). "Top-Down Neural Model For Formulae". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=Byg5QhR5FQ.
- Evans, Richard et al. (2018). "Can Neural Networks Understand Logical Entailment?" In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=SkZxCk=0Z.

- Irving, Geoffrey et al. (2016). "DeepMath Deep Sequence Models for Premise Selection". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 2235-2243. URL: http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection.pdf.
- Loos, Sarah M. et al. (2017). "Deep Network Guided Proof Search". In: CoRR abs/1701.06972. arXiv: 1701.06972. URL: http://arxiv.org/abs/1701.06972.

í.

Oord, Aäron van den et al. (2016). "WaveNet: A Generative Model for Raw Audio". In: CoRR abs/1609.03499. arXiv: 1609.03499. URL: http://arxiv.org/abs/1609.03499.

Bibliography II

Selsam, Daniel and Nikolaj Bjørner (2019). "NeuroCore: Guiding High-Performance SAT Solvers with Unsat-Core Predictions". In: CoRR abs/1903.04671. arXiv: 1903.04671. URL: http://arxiv.org/abs/1903.04671.

Selsam, Daniel, Matthew Lamm, et al. (2018). "Learning a SAT Solver from Single-Bit Supervision". In: CoRR abs/1802.03685. arXiv: 1802.03685. URL: http://arxiv.org/abs/1802.03685.

Wang, Mingzhe et al. (2017). "Premise Selection for Theorem Proving by Deep Graph Embedding". In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., pp. 2786–2796. URL: http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graphembedding.pdf.