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Introduction

◮ the goal is to represent formulae by vectors (as good as
possible)
◮ we have seen such a representation using hand-crafted features

based on tree walks, . . .
◮ neural networks have proved to be very good in extracting

features in various domains—image classification, NLP, . . .

◮ the selection of presented models is very subjective and it is a
rapidly evolving area

◮ statistical approaches are based on the fact that in many
cases we can safely assume that we deal only with the
formulae of a certain structure
◮ we can assume there is a distribution behind formulae
◮ hence it is possible to take advantage of statistical regularities

1 / 35



Classical representations of formulae

◮ formulae are syntactic objects

◮ we use different languages based on what kind of problem we
want to solve and we usually prefer the weakest system that
fits our problem
◮ classical / non-classical
◮ propositional, FOL, HOL, . . .

◮ there are various representations
◮ standard formulae
◮ normal forms
◮ circuits

◮ there are even more types of proofs and they use different
types of formulae

◮ it really matters what we want to do with them
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Example—SAT

◮ we have formulae in CNF
◮ we have reasonable algorithms for them
◮ they can also simplify some things
◮ note that they are not unique, e.g.,

(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟) ∧ (𝑟 ⊃ 𝑝)

is equivalent to both

(¬𝑝 ∨ 𝑞) ∧ (¬𝑞 ∨ 𝑟) ∧ (¬𝑟 ∨ 𝑝)

and

(¬𝑝 ∨ 𝑟) ∧ (¬𝑞 ∨ 𝑝) ∧ (¬𝑟 ∨ 𝑞)

◮ it is trivial to test formulae in DNF, but transforming a
formula into DNF can lead to an exponential increase in the
size of the formula
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Semantic properties

◮ we want to capture the meaning of terms and formulae that is
their semantic properties

◮ however, a representation should depend on the property we
want to test
◮ a representation of (𝑥 ⊗ 𝑦) ≤ (𝑥 + 𝑦) and 𝑥2 ⊗ 𝑦2 should take

into account whether we want to apply it on a binary predicate
𝑃 which says

◮ they are equal polynomials
◮ they contain the same number of pluses and minuses
◮ they are both in a normal form
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Feed-forward neural networks

◮ in our case we are interested in supervised learning

◮ it is a function 𝑓 : Rn ⊃ R
m

◮ they are good in extracting features from the data

image source: PyTorch
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https://pytorch.org/tutorials/_images/mnist.png


Fully-connected NNs

Neuron

image source: cs231n

image source: cs231n

NN with two hidden layers

image source: cs231n
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Activation functions

◮ they produce non-linearities, otherwise only linear
transformations are possible

◮ they are applied element-wise

Common activation functions

◮ ReLU (max(0, 𝑥))

◮ tanh ( ex
−e−x

ex+e−x
)

◮ sigmoid ( 1

1+e−x
)

Note that tanh(𝑥) =
2sigmoid(2𝑥) ⊗ 1 and
ReLU is non-differentiable
at zero.

image source: here

7 / 35

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6


Learning of NNs

◮ initialization is important

◮ we define a loss function
◮ the distance between the computed output and the true output

◮ we want to minimize it by gradient descent (backpropagation
using the chain rule)
◮ optimizers—plain SGD, Adam, . . .

image source: Science
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https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy


NNs and propositional logic

◮ already Pitts in his 1943 paper discusses the representation of
propositional formulae

◮ it is well known that connectives like conjunction, disjunction,
and negation can be computed by a NN

◮ every Boolean function can be learned by a NN
◮ XOR requires a hidden layer

◮ John McCarthy: NNs are essentially propositional
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Bag of words

◮ we represent a formula as a sequence of tokens (atomic
objects, strings with a meaning) where a symbol is a token

𝑝 ⊃ (𝑞 ⊃ 𝑝) =⇒ 𝑋 = ⟨𝑝, ⊃, (, 𝑞, ⊃, 𝑝, )⟩
𝑃 (𝑓(0, sin(𝑥))) =⇒ 𝑋 = ⟨𝑃, (, 𝑓, (, sin, (, 𝑥, ), ), )⟩

◮ the simplest approach is to treat it as a bag of words (BoW)
◮ tokens are represented by learned vectors
◮ linear BoW is emb(𝑋) = 1

|X|

√︁

x∈X
emb(𝑥)

◮ we can “improve” it by the variants of term frequency–inverse
document frequency (tf-idf)

◮ it completely ignores the order of tokens in formulae
◮ 𝑝 ⊃ (𝑞 ⊃ 𝑝) becomes equivalent to 𝑝 ⊃ (𝑝 ⊃ 𝑞)

◮ even such a simple representation can be useful, e.g.,
in Balunovic, Bielik, and Vechev 2018, they use BoW for
guiding an SMT solver
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Learning embeddings for BoW

◮ say we want a classifier to test whether a formula 𝑋 is TAUT
◮ a very bad idea for reasonable inputs
◮ no more involved computations (no backtracking)

◮ we have embeddings in R
n

◮ our classifier is a neural network MLP: Rn ⊃ R
2

◮ if 𝑋 is TAUT, then we want MLP(emb(𝑋)) = ⟨1, 0⟩
◮ if 𝑋 is not TAUT, then we want MLP(emb(𝑋)) = ⟨0, 1⟩

◮ we learn the embeddings of tokens
◮ missing and rare symbols

◮ note that for practical reasons it is better to have the output
in R

2 rather than in R
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Recurrent NNs (RNNs)

◮ standard feed-forward NNs assume the fixed-size input

◮ we have sequences of tokens of various lengths

◮ we can consume a sequence of vectors by applying the same
NN again and again and taking the hidden states of the
previous application also into account

◮ various types
◮ hidden state—linear, tanh
◮ output—linear over the hidden state

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Problems with RNNs

◮ hard to parallelize

◮ in principle RNNs can learn long dependencies, but in practice
it does not work well
◮ say we want to test whether a formula is TAUT

◮ · · · → (𝑝 → 𝑝)
◮ ((𝑝 ∧ ¬𝑝) ∧ . . . ) → 𝑞

◮ (𝑝 ∧ . . . ) → 𝑝
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LSTM and GRU
◮ Long short-term memory (LSTM) was developed to help with

vanishing and exploding gradients in vanilla RNNs
◮ a cell state
◮ a forget gate, an input gate, and an output gate

◮ Gated recurrent unit (GRU) is a “simplified” LSTM
◮ a single update gate (forget+input) and state (cell+hidden)

◮ many variants — bidirectional, stacked, . . .

image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Convolutional networks
◮ very popular in image classification—easy to parallelize
◮ we compute vectors for every possible subsequence of a

certain length
◮ zero padding for shorter expressions

◮ max-pooling over results—we want the most important
activation

◮ character-level convolutions—premise sel. (Irving et al. 2016)
◮ improved to the word-level by “definition”-embeddings

Axiom first order logic 
sequence 

CNN/RNN Sequence model

Conjecture first order logic 
sequence 

CNN/RNN Sequence model

Concatenate embeddings

Fully connected layer with 
1024 outputs

Fully connected layer with 1 
output

Logistic loss

! [ A , B ] : ( g t a ...

Wx+b Wx+b Wx+b Wx+b Wx+b

Ux+c Ux+c Ux+c

Maximum

image source: Irving et al. 2016
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Convolutional networks II.

◮ word level convolutions—proof guidance (Loos et al. 2017)
◮ WaveNet (Oord et al. 2016) — a hierarchical convolutional

network with dilated convolutions and residual connections

Input

Hidden Layer

Dilation = 1

Hidden Layer

Dilation = 2

Hidden Layer

Dilation = 4

Output

Dilation = 8

image source: Oord et al. 2016
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Recursive NN (TreeNN)

◮ we have seen them in Enigma

◮ we can exploit compositionality and the tree structure of our
objects and use recursive NNs (Goller and Kuchler 1996)

4

2

5

3

1

COMBINE

COMBINE

Syntax tree Network architecture

image source: EqNet slides
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http://homepages.inf.ed.ac.uk/csutton/talks/icml2017/eqnet-icml-2017.pdf


TreeNN (example)

◮ leaves are learned embeddings
◮ both occurrences of 𝑏 share the same embedding

◮ other nodes are NNs that combine the embeddings of their
children
◮ both occurrences of + share the same NN
◮ we can also learn one apply function instead
◮ functions with many arguments can be treated using pooling,

RNNs, convolutions etc.

+

√

+

𝑎 𝑏

+

𝑏 𝑐

term representation

𝑎 R
n

𝑏 R
n

𝑐 R
n

√
R

n ⊃ R
n

+ R
n × R

n ⊃ R
n
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Notes on compositionality

◮ we assume that it is possible to “easily” obtain the embedding
of a more complex object from the embeddings of simpler
objects

◮ it is usually true, but

𝑓(𝑥, 𝑦) =

∮︁

1 if 𝑥 halts on 𝑦,

0 otherwise.

◮ even constants can be complex, e.g., ¶ 𝑥 : ∀𝑦(𝑓(𝑥, 𝑦) = 1) ♢
◮ very special objects are variables and Skolem functions

(constants)

◮ note that different types of objects can live in different spaces
as long as we can connect things together
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TreeNNs

◮ advantages
◮ powerful and straightforward—in Enigma we model clauses in

FOL
◮ caching

◮ disadvantages
◮ quite expensive to train
◮ usually take syntax too much into account
◮ hard to express that, e.g., variables are invariant under

renaming

◮ PossibleWorldNet (Evans et al. 2018) for propositional logic
◮ randomly generated “worlds” that are combined with the

embeddings of atoms
◮ we evaluate the formula against many such worlds
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EqNet (Allamanis et al. 2017)

◮ the goal is to learn semantically equivalent representations
(equal terms should be as close as possible, i.e., the 𝑘-nearest
neighbors algorithm)

a− (b+ c)

(a+ b)− (b+ c)

b− a

(a+ c)− (c+ b)

b− (a+ c)
a− (c− b)

(c− c)− (a− b)

a− (b− c)

c− (a+ b)

(b− b)− (a− c)

(b− a) + c

c− a

a− c

a− b

image source: Allamanis et al. 2017
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EqNet

◮ a standard TreeNN improved by
◮ normalization (embeddings have unit norm)
◮ regularization (subexpression autoencoder)

◮ aiming for abstraction and reversibility
◮ denoising AE — randomly turn some weights to zero

(a) Architectural diagram of E N s. Example parse tree shown is of the boolean expressionimage source: Allamanis et al. 2017

22 / 35



Tree-LSTM (Tai, Socher, and Manning 2015)

◮ gating vectors and memory cell updates are dependent on the
states of possibly many child units

◮ it contains a forget gate for each child
◮ child-sum or at most 𝑁 ordered children

image source: Chris Olah
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https://twitter.com/ch402/status/795743422887837696


Bottom-up recursive model
Say we want to test whether a propositional formula is TAUT. We
compute the embeddings of more complex objects from the
embeddings of simple objects. We learn

◮ the embeddings of atoms

◮ NNs for logical connectives (combine)
•

Taut?

embedding of formula

embeddings of atoms

∨

∧
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Top-down recursive model

We change the order of propagation; the embedding of the
property is propagated to subformulae. We learn

◮ the embedding of the property (tautology)

◮ NNs for logical connectives (split)•

embedding of property

embeddings of atoms

Taut?

∨

∧
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Top-down model for F = (p ⊃ q) ∨ (q ⊃ p)

w

c∨

c⊃ c⊃

p1 q1 q2 p2

RNN-Var

RNN-Var

p1 p2

q1 q2

p q RNN-All

Final

out
Vectors (in R

d):

We train the representations of w, 𝑐i, RNN-Var, RNN-All, and
Final. These components are shared among all the formulae. For a
single formula we produce a model (neural network) recursively
from them.
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Top-down model
Vectors (in R

d):

◮ w is the input embedding of the property (tautology)
◮ p1, p2, q1, and q2 represent the individual occurrences of

atoms in 𝐹 , where p1 corresponds to the first occurrence of
the atom 𝑝 in 𝐹

◮ p and q represent all the occurrences of 𝑝 and 𝑞 in 𝐹 ,
respectively

◮ out ∈ R
2 gives true/false

Neural networks:

◮ c∨ and c→ represent binary connectives ∨ and ⊃,
respectively
◮ they are functions R

d ⊃ R
d × R

d, because ∨ and ⊃ are
binary connectives

◮ RNN-Var aggregates vectors corresponding to the same atom
◮ RNN-All aggregates the outputs of RNN-Var components
◮ Final is a final decision layer
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Properties of top-down models

Top-down models

◮ are insensitive to the renaming of atoms

◮ can evaluate unseen atoms and the number of distinct atoms
that can occur in a formula is only bounded by the ability of
RNN-All to correctly process the outputs of RNN-Var

◮ work quite well for some sets of formulae

◮ make it harder to interpret the produced representations

◮ can be probably reasonably extended to FOL, but it more or
less leads to more complicated structures and hence graph
NNs (GNNs)
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FormulaNet (Wang et al. 2017)

◮ we represent higher-order formulae by graphs (GNNs)

x

f

f P

x x fc VAR

f

f

P

c x

P

c

VARFUNC

(a) (b) (c) (d)

VAR

image source: Wang et al. 2017
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FormulaNet — embeddings
◮ init is a one-hot repr. for every symbol (𝑓 , ∀, ∧, VAR, . . . )
◮ 𝐹I and 𝐹O are update functions for incoming and outgoing

edges, respectively
◮ 𝐹P combines 𝐹I and 𝐹O

◮ 𝐹R, 𝐹L, 𝐹H are introduced to preserve the order of arguments
(otherwise 𝑓(𝑥, 𝑦) is the same thing as 𝑓(𝑦, 𝑥))
◮ 𝐹R (𝐹L) is a treelet (triples) where 𝑣 is the right (left) child
◮ 𝐹H is a treelet where 𝑣 is the head

◮ updates are done in parallel
◮ the final representation of the formula is obtained by

max-pooling over the embeddings of nodes

v

u u

u u

u u

image source: Wang et al. 2017

30 / 35



NeuroSAT (Selsam, Lamm, et al. 2018)

◮ the goal is to decide whether a prop. formula in CNF is SAT

◮ two types of nodes with embeddings
◮ literals
◮ clauses

◮ two types of edges
◮ between complementary literals
◮ between literals and clauses

◮ we iterate message passing in two stages (back and forth)
◮ we use two LSTMs for that

◮ invariant to the renaming of variables, negating all literals, the
permutations of literals and clauses

x1 x1 x2 x2

c1 c2

(a)

x1 x1 x2 x2

c1 c2

(b)

✶

image source: Selsam, Lamm, et al. 2018
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NeuroSAT voting

◮ we have a function vote that computes for every literal
whether it votes SAT (red) or UNSAT (blue)

◮ all votings are averaged and the final result is produced

◮ it is sometimes possible to read an assignment—darker points

◮ it is sometimes possible to read an UNSAT core, but see
NeuroCore (Selsam and Bjørner 2019)

Iteration −→
image source: Selsam, Lamm, et al. 2018
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Circuit-SAT (Amizadeh, Matusevych, and Weimer 2019)

◮ we have a circuit (DAG) instead of a CNF

◮ they use smooth min, max (fully differentiable w.r.t to all
inputs), and 1 ⊗ 𝑥 functions for logical operators

◮ GRUs are used for updates

(a) (b)

11
33

22
44

𝑥ଵଵ𝑥ଵଶ𝑥ଵଷ
𝑥ଶଵ𝑥ଶଶ𝑥ଶଷ

𝑥ଷଵ𝑥ଷଶ𝑥ଷଷ

𝑥ସଵ𝑥ସଶ𝑥ସଷ

Projection

Pooling

Classifier

44
33
11

22

Forward
Layer

Reverse
Layer

Input Node
Feature Layer

image source: Amizadeh, Matusevych, and Weimer 2019
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Conclusion

◮ we have seen various approaches how to represent formulae

◮ it really matters what we want to do with our representations
(property)

◮ there are many other relevant topics
◮ attention mechanisms

◮ popular for aggregating sequences
◮ sensitive to hyperparameters

◮ approaches based on ILP
◮ usually we ground the problem to make it propositional

◮ maybe it is even better to formulate our problem directly in a
language friendly to NNs and not to use classical formulae. . .
◮ non-classical logics
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