Learning-Assisted Reasoning within Interactive Theorem Provers

Thibault Gauthier

May 17, 2019

white, spherical, many petals

red, star-shaped, five petals

Object

Properties

Proof Assistant	Theorems	Constants
Mizar 🕂	51086	9172
Coq 🤌	23320	4841
HOL4 🔶	16476	2247
HOL Light 🎬	16191	820
lsabelle/HOL 谷	14814	1076
Matita 🚺	1712	629

Demo

	Formula	Syntactic features
Conjecture	$\forall x, y. (x+y) \times (x-y) = x^2 - y^2$	
	$\forall x, y, z. \ x \times (y+z) = x \times y + x \times z$	
	$\forall x, y. \ x + y = y + x$	
Library	$\forall x, y. \ x \times y = y \times x$	
	$e^{i\pi}+1=0$	
	$(x^2)' = 2 \times x$	

	Formula	Syntactic features
Conjecture	$\forall x, y. \ (x+y) \times (x-y) = x^2 - y^2$	+,×, 2
	$\forall x, y, z. \ x \times (y+z) = x \times y + x \times z$	$\times,+$
	$\forall x, y. \ x + y = y + x$	+
Library	$\forall x, y. \ x \times y = y \times x$	×
	$e^{i\pi}+1=0$	$e, i, imes, \pi, +, 1, 0$
	$(x^2)' = 2 \times x$	′,2,×, ²

 $\rightarrow \mathsf{rule}$

\bigcirc lemma

\bigcirc lemma

 \bullet conjectureTheoremDependencies \bullet theorem8549 12 71 \bigcirc lemma10251 45 86 12

. . .

. . .

Re-proving

Tested library	Benchmark	Success	
- ф .	standard library	40%	
	judgement day	77%	
KOP Luim	flyspeck	39%	
	standard library	50%	
2	standard library	41%	

Demo

Tactics	Useful for
Solvers	linear system, differential equations
Simplifiers	irreducible fraction, differentiation
Induction	natural numbers, lists, trees

$REWRITE_TAC$

INDUCT_TAC

METIS_TAC

Demo

Proof recording

Original proof:

```
INDUCT_TAC THENL [REWRITE_TAC, METIS_TAC]
```

Modified proof:

(R numLib.INDUCT_TAC) THENL
[R boolLib.REWRITE_TAC, R metisLib.METIS_TAC]

Database of tactics:

R (f n) (f (SUC n)) \Rightarrow transitive R: INDUCT_TAC n * m \le n * p \Rightarrow (n = 0) V m \le p : REWRITE_TAC INJ f U(:num) s \Rightarrow INFINITE s : METIS_TAC ...

Prediction algorithm

Algorithm:

Nearest neighbor weighted by TF-IDF heuristics

Effect:

Order goals from the database according to their distance to a target goal.

Remark: This is algorithm performs premise selection. How do we adapt it to predict tactics?

Policy

. . .

Database of tactics is a map from goals to tactics.

```
R (f n) (f (SUC n)) \Rightarrow transitive R: INDUCT_TAC
n * m \leq n * p \Rightarrow (n = 0) V m \leq p : REWRITE_TAC
INJ f U(:num) s \Rightarrow INFINITE s : METIS_TAC
...
```

An order on goals induces an order on tactics.

New goal appearing during proof search: LENGTH (MAP f 1) = LENGTH 1

Policy for the new goal:

Tactic	Policy
REWRITE_TAC	0.5
METIS_TAC	0.25
INDUCT_TAC	0.0625
	Tactic REWRITE_TAC METIS_TAC INDUCT_TAC

Database of lists of goals:

- ► Positive examples: appears in human proofs.
- Negative examples: produced during TacticToe search but do not appear in the final proof.

Training

Improve recorded data to create better predictions during search.

Training: orthogonalization

Issue: Many tactics are doing the same job on a goal g.

Solution: Competition for g where the most popular tactic wins.

Training: orthogonalization

```
Recorded goal-tactic pair:

LENGTH (MAP f l) = LENGTH l: INDUCT_TAC

Competition:

Progress Coverage

INDUCT_TAC Yes 136

REWRITE_TAC No 2567

METIS_TAC Yes 694
```

Added to the database:

LENGTH (MAP f l) = LENGTH l: METIS_TAC

Result: 6 % improvement.

Issue: Some theorems are never used inside tactics.

Solution: Abstract all lists of theorems in a tactic and instantiate them depending on the target goal.

Training: abstraction

Abstraction algorithm:

Original	:	REWRITE_TAC	[T1,T2	2]		
Abstraction	:	REWRITE_TAC	Х			
Instantiation	:	REWRITE_TAC	[T67,	Τ1 ,	Τ4З,]

Question: Dow we keep the original or the abstraction ?

Answer: Let them compete during orthogonalization.

Result: 15% improvement

Issue: Predictions are too slow during proof search.

Solution: Preselect 1000 suitable tactics by importing proofs (many tactics) from related goals.

Proof search: search tree

Re-proving

Tested library Proof automation Success Image: Constraint of the second sec

Re-proving: HOL4 proofs found in less than x seconds

Re-proving: percentage of solved HOL4 proof of size x

Before:

boolLib.REWRITE_TAC [DB.fetch "list" "EVERY_CONJ",...]
THEN

BasicProvers.Induct_on [HolKernel.QUOTE "1"]

THENL

[BasicProvers.SRW_TAC [] [], simpLib.ASM_SIMP_TAC (BasicProvers.srw_ss ()) [boolLib.DISJ_IMP_THM, DB.fetch "list" "MAP", DB.fetch "list" "CONS_11", boolLib.FORALL_AND_THM]]

After:

```
Induct_on `l` THENL
[SRW_TAC [] [],
ASM_SIMP_TAC (srw_ss ())
[DISJ_IMP_THM, FORALL_AND_THM]]
```

Summary: TacticToe learns from human proofs to solve new goals.

Advantages over ATPs (E prover) for ITP (HOL4) users:

- Includes domain specific automation found in the ITP.
- Generated proofs are human-level proofs.
- ► No translation or reconstruction needed.

Demo