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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� ...
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Sample of Learning Approaches We Have Been Using
� neural networks (statistical ML) – backpropagation, deep learning,

convolutional, recurrent, etc.
� decision trees, random forests, gradient tree boosting – find good

classifying attributes (and/or their values); more explainable
� support vector machines – find a good classifying hyperplane, possibly

after non-linear transformation of the data (kernel methods)
� k-nearest neighbor – find the k nearest neighbors to the query, combine

their solutions
� naive Bayes – compute probabilities of outcomes assuming complete

(naive) independence of characterizing features (just multiplying
probabilities)

� inductive logic programming (symbolic ML) – generate logical
explanation (program) from a set of ground clauses by generalization

� genetic algorithms – evolve large population by crossover and mutation
� combinations of statistical and symbolic approaches (probabilistic

grammars, semantic features, ...)
� supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward) 4 / 36



Learning – Features and Data Preprocessing

� Extremely important - if irrelevant, there is no use to learn the function
from input to output (“garbage in garbage out”)

� Feature discovery – a big field
� Deep Learning – design neural architectures that automatically find

important high-level features for a task
� Latent Semantics, dimensionality reduction: use linear algebra

(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them

� word2vec and related methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

� math and theorem proving: syntactic/semantic patterns/abstractions
� how do we represent math objects (formulas, proofs, ideas) in our mind?
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Reasoning Datasets - Large ITP Libraries and Projects

� Mizar / MML / MPTP – since 2003
� MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
� Isabelle (and AFP) – since 2005
� Flyspeck (including core HOL Light and Multivariate) – since 2012
� HOLStep – 2016, kernel inferences
� Coq – since 2013/2016
� HOL4 – since 2014
� ACL2 – 2014?
� Lean? – 2017?
� Stacks?, ProofWiki?, Arxiv?
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High-level ATP guidance: Premise Selection

� Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose)
� Today: Premise selection is not a mysterious property of mathematicians!
� Reasonably good algorithms started to appear (more below).
� Will extensive human (math) knowledge get obsolete?? (cf. Watson,

Debater, etc)
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Example system: Mizar Proof Advisor (2003)

� train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
� input features: conjecture symbols; output labels: names of facts
� recommend relevant facts when proving new conjectures
� give them to unmodified FOL ATPs
� possibly reconstruct inside the ITP afterwards (lots of work)
� First results over the whole Mizar library in 2003:

� about 70% coverage in the first 100 recommended premises
� chain the recommendations with strong ATPs to get full proofs
� about 14% of the Mizar theorems were then automatically provable (SPASS)

� Today’s methods: about 45-50% (and we are still just beginning!)

8 / 36



Smaller AI/ATP benchmarks: MPTP Challenge (2006)

� 252 problems from Mizar – Bolzano-Weierstrass theorem
� small (bushy) and large (chainy) problems
� about 1500 formulas altogether
� a bigger version in 2011: 2078 problems, 4500 formulas – MPTP2078
� large-theory reasoning competitions: CASC LTB (since 2008)
� Large Mizar benchmark: Mizar40 – about 60k Mizar problems
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ML Evaluation of methods on MPTP2078 – recall

� Coverage (recall) of facts needed for the Mizar proof in first n predictions
� MOR-CG – kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
� SINe, Aprils - heuristic (non-learning) fact selectors
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ATP Evaluation of methods on MPTP2078

� Number of the problems proved by ATP when given n best-ranked facts
� Good machine learning on previous proofs really matters for ATP!
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Combined (ensemble) methods on MPTP2078
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Large Evaluation on MML – 60k theorems

14 most covering (40.6%) ML/ATP methods ordered by greedy coverage
Method Parameters Prems. ATP �-SOTAC Theorem (%) Greedy (%)

comb min_2k_20_20 128 Epar 1728.34 15789 (27.3) 15789 (27.2)
lsi 3200ti_8_80 128 Epar 1753.56 15561 (26.9) 17985 (31.0)
comb qua_2k_k200_33_33 512 Epar 1520.73 13907 (24.0) 19323 (33.4)
knn is_40 96 Z3 1634.50 11650 (20.1) 20388 (35.2)
nb idf010 128 Epar 1630.77 14004 (24.2) 21057 (36.4)
knn is_80 1024 V 1324.39 12277 (21.2) 21561 (37.2)
geo r_99 64 V 1357.58 11578 (20.0) 22006 (38.0)
comb geo_2k_50_50 64 Epar 1724.43 14335 (24.8) 22359 (38.6)
comb geo_2k_60_20 1024 V 1361.81 12382 (21.4) 22652 (39.1)
comb har_2k_k200_33_33 256 Epar 1714.06 15410 (26.6) 22910 (39.6)
geo r_90 256 V 1445.18 13850 (23.9) 23107 (39.9)
lsi 3200ti_8_80 128 V 1621.11 14783 (25.5) 23259 (40.2)
comb geo_2k_50_00 96 V 1697.10 15139 (26.1) 23393 (40.4)
geo r_90 256 Epar 1415.48 14093 (24.3) 23478 (40.6)

13 / 36



Summary of Features Used

� From syntactic to more semantic:
� Constant and function symbols
� Walks in the term graph
� Walks in clauses with polarity and variables/skolems unified
� Subterms, de Bruijn normalized
� Subterms, all variables unified
� Matching terms, no generalizations
� terms and (some of) their generalizations
� Substitution tree nodes
� All unifying terms
� Evaluation in a large set of (finite) models
� LSI/PCA combinations of above
� Neural embeddings of above
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Terms as graphs

Paths in the term

f(a,g(b,c),h(d))

f g h a b c d
f-a f-b f-c f-d f-g f-h g-b g-c h-d
f-g-b f-g-c f-h-d
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Substitution Trees

subset(A,B)
subset(a,b)
subset(a,c)
subset(C,C)
subset(a,a)

ROOT

[ROOT=subset(B,C)]

[B=D,C=D] [B=a,C=E] [B=F,C=G]

[E=a] [E=c] [E=b]
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Discrimination Nets
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Generalizations of f(a,g(b,c),h(d))
Right:

V a b c d h(V) h(d) g(V,V) g(b,V) g(b,c) f(V,V,V)
f(a,V,V) f(a,g(V,V),V) f(a,g(b,V),V) f(a,g(b,c),V)
f(a,g(b,c),h(V)) f(a,g(b,c),h(d))

Left:

V a b c d h(V) h(d) g(V,V) g(V,c) g(b,c) f(V,V,V)
f(V,V,h(V)) f(V,V,h(d)) f(V,g(V,V),h(d))
f(V,g(V,c),h(d)) f(V,g(b,c),h(d))

Positions:

V a b c d h(V) h(d) g(V,c) g(b,V) g(b,c)
f(V,g(b,c),h(d)) f(a,V,h(d)) f(a,g(V,c),h(d))
f(a,g(b,V),h(d)) f(a,g(b,c),V) f(a,g(b,c),h(V))
f(a,g(b,c),h(d))

Combinations.
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Summary of Features Used

Name Description

SYM Constant and function symbols
TRM0 Subterms, all variables unified
TRM� Subterms, de Bruijn normalized
MAT? Matching terms, no generalizations
MATr Repeated gener. of rightmost innermost constant
MATl Repeated gener. of leftmost innermost constant
MAT1 Gener. of each application argument
MAT2 Gener. of each application argument pair
MAT[ Union of all above generalizations
PAT Walks in the term graph
ABS Substitution tree nodes
UNI All unifying terms
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Feature Statistics (MPTP2078 and MML1147)

Method Speed (sec) Number of features Learning and prediction (sec)
MPTP2078 MML1147 total unique knn naive Bayes

SYM 0.25 10.52 30996 2603 0.96 11.80
TRM� 0.11 12.04 42685 10633 0.96 24.55
TRM0 0.13 13.31 35446 6621 1.01 16.70
MAT∅ 0.71 38.45 57565 7334 1.49 24.06
MATr 1.09 71.21 78594 20455 1.51 39.01
MATl 1.22 113.19 75868 17592 1.50 37.47
MAT1 1.16 98.32 82052 23635 1.55 41.13
MAT2 5.32 4035.34 158936 80053 1.65 96.41
MAT[ 6.31 4062.83 180825 95178 1.71 112.66

PAT 0.34 64.65 118838 16226 2.19 52.56
ABS 11 10800 56691 6360 1.67 23.40
UNI 25 N/A 1543161 6462 21.33 516.24
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ATP evaluation (E-prover / k-NN)

8 16 32 64 128 256
0

10

20

30

40

all
MAT?

PAT
ABS

TRM0

SYM
UNI

Method Proved (%) Theorems

MAT∅ 54.379 1130
MATr 54.331 1129
MATl 54.283 1128
PAT 54.235 1127

MAT[ 53.994 1122
MAT1 53.994 1122
MAT2 53.898 1120
ABS 53.802 1118

TRM0 50.529 1050
UNI 50.241 1044
SYM 48.027 998

TRM� 43.888 912

SYMjTRM0jMAT∅jABS 55.486 1153
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Machine Learner for Automated Reasoning
� MaLARea (2006) – infinite hammering/premise selection
� feedback loop interleaving ATP with learning premise selection
� both syntactic and semantic features for characterizing formulas:
� evolving set of finite (counter)models in which formulas evaluated
� thus the semantic features are evolving as the feedback loop progresses
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Combining ML with semantic selection in Malarea

� run model finder before ATPs when it makes sense
� Paradox used when there are less then 64 axioms, and the time limit is

small
� detects countersatisfiability much more often and much faster than E and

SPASS on small problems
� thousands of (typically different) models usually found in MaLARea runs,

creating an interesting database of models relevant for the large theory
� the model database is usable for further purposes
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Combining ML with semantic selection in Malarea

� use semantic information for updating axiom relevance
� all formulas from the large theory are evaluated in the models found by

model finders
� heuristically, axiom A is more useful for a negated conjecture C if it

excludes more models of C
� also, the more rare the exclusion of a certain model of C, the more

valuable is the axiom
� let’s make invalidity in each model into another feature charactarizing

formulas, and use it for machine learning as other features
� this works in the Bayseian framework exactly the same as e.g.

symbol-based similarity:
� e.g. an axiom sharing a rare countermodel with a conjecture is promoted

in the same way as an axiom sharing a rare symbol with the conjecture
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Semantic features in Malarea - Evaluation

� chainy division of the MPTP Challenge: 252 related problems, average
size 400 formulas, 1500 formulas in total

� 21 hours overall timelimit
� SRASS: 126, standard MaLARea: 144, with term structure (TS) learning:

149, with TS and semantic guidance (SG): 161
� the base ATPs (E,SPASS): 80 - 90 problems each when 300s for each

problem, 104 together (if each 64s for each problem) TS + SG in fast
mode: 128 in 2-3 hors, 104 in 30-60 minutes
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Some More Improvements and Additions

� Distance-weighted k-nearest neighbor, LSI, boosted trees (XGBoost)
� Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
� Lemmatization – extracting and considering millions of low-level lemmas
� Neural sequence models, definitional embeddings (Google Research)
� Hammers combined with statistical tactical search: TacticToe (HOL4)
� Learning in binary setting from many alternative proofs

(DeepMath,ATPBoost)
� Negative/positive mining (ATPBoost)
� Features of the proof state - syntactic, neural, proof-matching vectors
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Matching concepts across libraries

� Same concepts in different proof assistants
� Problem for proof translation
� Manually found 7-70 pairs

� Same properties
� Patterns, like associativity, distributivity ...
� Same algebraic structures do differ.

� Automatically finds 400 pairs of same concepts
� In HOL Light, HOL4, Isabelle/HOL
� Coq: so far only lists analyzed

� Proof advice can be universal?
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Representing formulas with binary features

Our current approach is to represent formulas with syntax-based features –
symbols, terms, subterms...

Theorem IRRAT_1:2 again:
fof(t2_irrat_1, conjecture,
(?[A]: (v1_xreal_0(A) &
(?[B]: (v1_xreal_0(B) &
(~(v1_rat_1(A)) & (~(v1_rat_1(B)) &
v1_rat_1(k3_power(A, B))))))))).

... and its feature description:
"v1_xreal_0-V", "v1_xreal_0(A)", "v1_xreal_0",
"v1_rat_1-k3_power", "v1_rat_1-V",
"v1_rat_1(k3_power(A,A))", "v1_rat_1(A)", "v1_rat_1",
"k3_power-V", "k3_power(A,A)", "k3_power"

After featuresing the whole MML we obtain 451706 such features.
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ATPBoost – Binary settings

There are two possible settings in which we can approach premise selection
with machine learning:

1 multilabel setting: here we treat premises used in the proofs as opaque
labels on theorems and we train a model capable of labeling conjectures
based on their features,

2 binary setting: here the aim of the learning model is to recognize
pairwise-relevance of the conjecture-premise pairs, i.e. to decide what is
the chance of the premise being relevant for proving the conjecture based
on the features of both the conjecture and the premise.

The first approach is more accessible and was more used so far. The second
setting, though, is more general and better for modern, strong ML algorithms.
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ATPBoost

� Positive and negative examples for training set were initially generated
from the theorems with proofs in the following way:

� as positives we take pairs (theorem-premise) if premise appears in at least
one proof of the theorem,

� negatives are randomly taken from the set of pairs (theorem-premise) where
the premise is available for the theorem but there is no ATP-proof of the
theorem with this premise.

Every such pair is presented to the ML algorithm as concatenation of its
feature representation labeled by 0 or 1.

� After model is trained, we use it to create ranking of premises available
for theorem from the outside of training set.
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To tune parameters of XGBoost model, training/test split was fixed and each
trained model was evaluated with ATP:
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