Towards Machine Learning for SMT

Mikoláš Janota

MLR, 30 April 2020

Intro: QBF, Expansion, Games, Careful expansion

 $\mathsf{Solving}\ \mathsf{QBF}$

Learning in QBF

Towards SMT

Janota

Intro: QBF, Expansion, Games, Careful expansion • SAT — for a Boolean formula, determine if it is satisfiable

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives $(\forall=\wedge,\;\exists=\vee)$

Example:

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives $(\forall = \land, \exists = \lor)$

Example:

(1) $\forall x \exists y. (x \leftrightarrow y)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives $(\forall = \land, \exists = \lor)$

Example:

(1) $\forall x \exists y. (x \leftrightarrow y)$ (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives $(\forall = \land, \exists = \lor)$

Example:

- (1) $\forall x \exists y. (x \leftrightarrow y)$
- (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
- $(3) \ ((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives $(\forall = \land, \exists = \lor)$

Example:

(1)
$$\forall x \exists y. (x \leftrightarrow y)$$

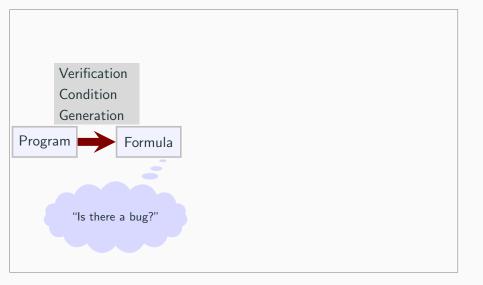
(2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
(3) $((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$
(4) 1 (True)

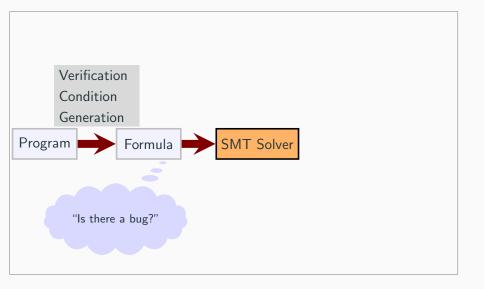
• reasoning in first order logic

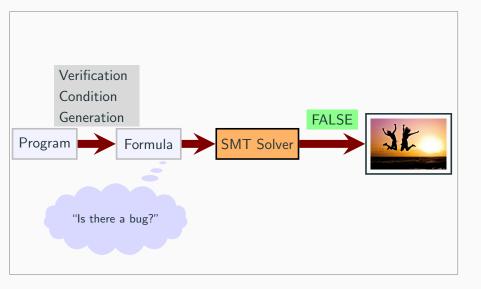
- reasoning in first order logic
- under a given theory, e.g. linear arithmetic without quantifiers

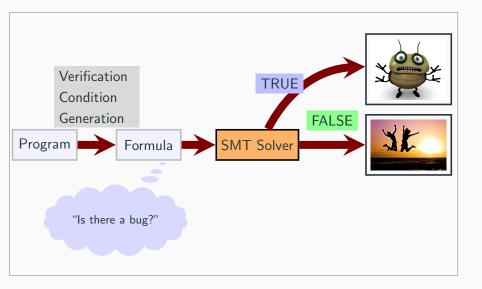
- reasoning in first order logic
- under a given theory, e.g. linear arithmetic without quantifiers
- focus: software verification, debugging,

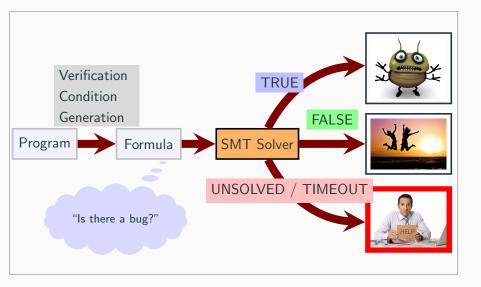
- reasoning in first order logic
- under a given theory, e.g. linear arithmetic without quantifiers
- focus: software verification, debugging,
- formulas may be huge, solvers are not based on saturation but on SAT technology

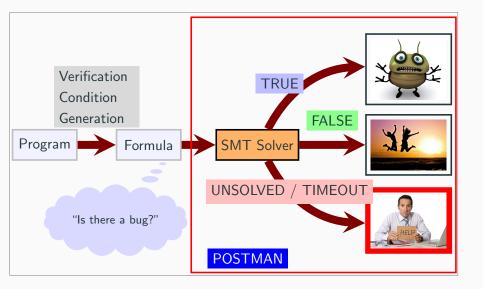




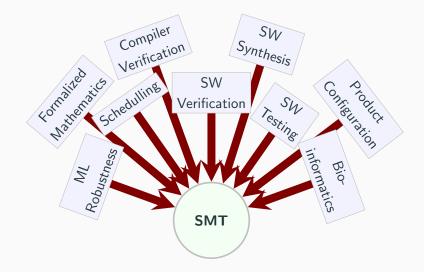








SMT Impact



Advertisement:

Hiring postdocs and PhD students to work on SMT + ML.

• Consider the QBF:

• Consider the QBF:

 $\forall u \exists e. \ u \leftrightarrow e$

1. Introduce a predicate for truth,

• Consider the QBF:

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,

• Consider the QBF:

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,
- 3. universal variables wrapped by the truth predicate: is-true(t) $\land \neg$ is-true(f) \land ($\forall X_u$. is-true(X_u) $\leftrightarrow p_e(X_u)$)

• Consider the QBF:

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,
- 3. universal variables wrapped by the truth predicate: $is-true(t) \land \neg is-true(f) \land$ $(\forall X_u. is-true(X_u) \leftrightarrow p_e(X_u))$
- Alternatively, use equality: $t
 eq f \land (\forall X_u. \ (X_u = t) \leftrightarrow p_e(X_u))$

• In this talk we consider prenex form: Quantifier-prefix. Matrix

In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$
- \forall wins a game if the matrix becomes false.

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$
- \forall wins a game if the matrix becomes false.
- \exists wins a game if the matrix becomes true.

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$
- \forall wins a game if the matrix becomes false.
- \exists wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall .

Quantification and Two-player Games

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$
- \forall wins a game if the matrix becomes false.
- \exists wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall .
- A QBF is true iff there exists a winning strategy for \exists .

Quantification and Two-player Games

- In this talk we consider prenex form: Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and $\exists.$
- \forall wins a game if the matrix becomes false.
- \exists wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall .
- A QBF is true iff there exists a winning strategy for ∃.
 Example

 $\forall u \exists e. (u \leftrightarrow e)$

 \exists -player wins by playing $e \triangleq u$.

Janota

Solving by CEGAR Expansion

$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Can be solved by SAT $\left(\bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \right)$. Impractical!

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Can be solved by SAT $\left(\bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \right)$. Impractical! Observe:

$$\exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \Rightarrow \exists \mathcal{E}. \ \bigwedge_{\mu \in \omega} \phi[\mu]$$

for some $\omega \subseteq 2^{\mathcal{U}}$

What is a good ω ?

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

• Pick au_0 arbitrary assignment to $\mathcal E$

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- Pick au_0 arbitrary assignment to ${\cal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- Pick au_0 arbitrary assignment to ${\mathcal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- Pick au_0 arbitrary assignment to ${\mathcal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}

$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- Pick au_0 arbitrary assignment to ${\mathcal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0] \land \phi[\mu_1]) = \tau_2$ assignment to ${\mathcal E}$

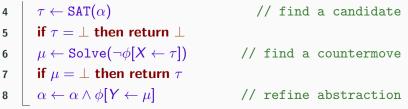
$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- Pick au_0 arbitrary assignment to ${\cal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0] \land \phi[\mu_1]) = \tau_2$ assignment to ${\mathcal E}$
- After *n* iterations

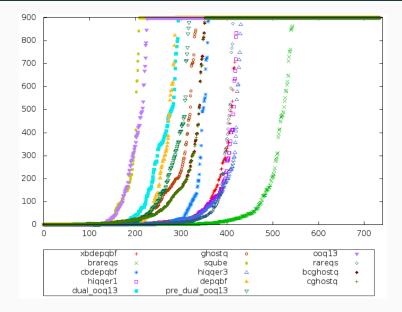
$$\exists \mathcal{E}. \ \bigwedge_{i \in 1..n} \phi[\tau_i]$$

Algorithm for $\exists \forall$. Generalize to arbitrary number of alternations using recursion. [J. et al., 2012].

- 1 Function Solve($\exists X \forall Y. \phi$)
- 2 $\alpha \leftarrow \text{true}$ // start with an empty abstraction
- 3 while true do



Results, QBF-Gallery '14, Application Track



$\exists x \dots \forall y \dots \phi \land y$

Setting countermove $y \leftarrow 0$ yields false. Stop.

$\exists x \dots \forall y \dots \phi \land y$

Setting countermove $y \leftarrow 0$ yields false. Stop.

 $\exists x \dots \forall y \dots x \lor \phi$

Setting candidate $x \leftarrow 1$ yields true (impossible to falsify). Stop.

 $\exists x \forall y. \ x \Leftrightarrow y$ 1. $x \leftarrow 1$

candidate

$\exists x \forall y. \ x \Leftrightarrow y$ 1. $x \leftarrow 1$ 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$

candidate countermove

$\exists x \forall y. \ x \Leftrightarrow y$

- 1. *x* ← 1
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$
- 3. SAT $(x \Leftrightarrow 0) \dots x \leftarrow 0$

candidate countermove candidate

$\exists x \forall y. \ x \Leftrightarrow y$

- 1. $x \leftarrow 1$
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$
- 3. $SAT(x \Leftrightarrow 0) \dots x \leftarrow 0$
- 4. $\operatorname{SAT}(\neg(0 \Leftrightarrow y)) \dots y \leftarrow 1$

candidate countermove candidate countermove

$\exists x \forall y. \ x \Leftrightarrow y$	
1. $x \leftarrow 1$	candidate
2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$	countermove
3. $SAT(x \Leftrightarrow 0) \dots x \leftarrow 0$	candidate
4. SAT $(\neg(0 \Leftrightarrow y)) \dots y \leftarrow 1$	countermove
5. $SAT(x \Leftrightarrow 0 \land x \Leftrightarrow 1) \dots$ UNSAT	Stop

$\exists x_1 x_2 \forall y_1 y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$

1. $x_1, x_2 \leftarrow 0, 0$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT $(\neg (0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT $(\neg (0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. $SAT(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \ldots x_1, x_2 \leftarrow 0, 1$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT $(\neg (0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. $SAT(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \dots x_1, x_2 \leftarrow 0, 1$
- 4. SAT $(\neg (0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$

- $\exists x_1 x_2 \forall y_1 y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$
 - 1. $x_1, x_2 \leftarrow 0, 0$
 - 2. SAT $(\neg (0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$
 - 3. $\operatorname{SAT}(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \dots x_1, x_2 \leftarrow 0, 1$
 - 4. SAT $(\neg (0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$
 - 5. $\operatorname{SAT}((x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \land (x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 0)) \dots$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT $(\neg (0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. $\operatorname{SAT}(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \dots x_1, x_2 \leftarrow 0, 1$
- 4. SAT $(\neg (0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$
- 5. $\operatorname{SAT}((x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \land (x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 0)) \dots$
- 6. ...

Learning in QBF

$$\exists x_1 \dots x_n \forall y_1 \dots y_n. \quad \bigvee_{i \in 1 \dots n} x_i \Leftrightarrow y_i$$

$$\exists x_1 \ldots x_n \forall y_1 \ldots y_n. \bigvee_{i \in 1 \ldots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1\ldots x_n \forall y_1\ldots y_n, \bigvee_{i\in 1\ldots n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1\ldots x_n, 0\right)$$

$$\exists x_1 \ldots x_n \forall y_1 \ldots y_n. \bigvee_{i \in 1 \ldots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1\ldots x_n \forall y_1\ldots y_n, \bigvee_{i\in 1\ldots n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1\ldots x_n, 0\right)$$

• Idea: instead of plugging in constants, plug in functions.

$$\exists x_1 \ldots x_n \forall y_1 \ldots y_n. \quad \bigvee_{i \in 1 \ldots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1\ldots x_n \forall y_1\ldots y_n, \bigvee_{i\in 1\ldots n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1\ldots x_n, 0\right)$$

- Idea: instead of plugging in constants, plug in functions.
- Where do we get the functions?

Janota

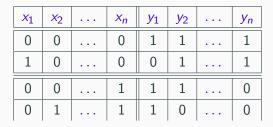
1. Enumerate some number of candidate-countermove pairs.

- 1. Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.

- 1. Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.
- 3. Strengthen abstraction with the functions.

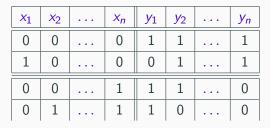
- 1. Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.
- 3. Strengthen abstraction with the functions.
- 4. Repeat.

<i>x</i> ₁	<i>x</i> ₂	 x _n	<i>y</i> ₁	<i>y</i> ₂	 y _n
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

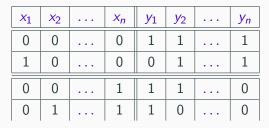


• After 2 steps: $y_1 \leftarrow \neg x_1$, $y_i \leftarrow 1$ for $i \in 2..n$.

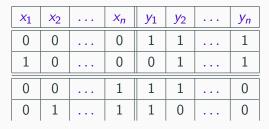
Janota



- After 2 steps: $y_1 \leftarrow \neg x_1$, $y_i \leftarrow 1$ for $i \in 2...n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2..n} x_2 \Leftrightarrow 1)$



- After 2 steps: $y_1 \leftarrow \neg x_1$, $y_i \leftarrow 1$ for $i \in 2...n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2..n} x_2 \Leftrightarrow 1)$
- After 4 steps: $y_1 \leftarrow \neg x_1 \ y_2 \leftarrow \neg x_2 \ \dots$



- After 2 steps: $y_1 \leftarrow \neg x_1$, $y_i \leftarrow 1$ for $i \in 2...n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2..n} x_2 \Leftrightarrow 1)$
- After 4 steps: $y_1 \leftarrow \neg x_1 \ y_2 \leftarrow \neg x_2 \ \dots$
- Eventually we learn the right functions.

• Use CEGAR as before.

- Use CEGAR as before.
- Recursion to generalize to multiple levels as before.

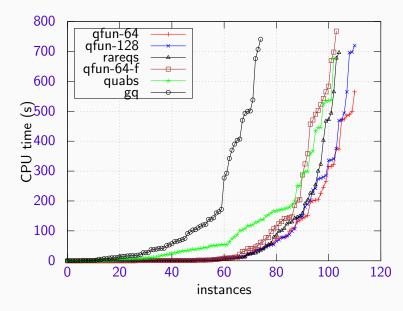
- Use CEGAR as before.
- Recursion to generalize to multiple levels as before.
- Refinement as before.

- Use CEGAR as before.
- Recursion to generalize to multiple levels as before.
- Refinement as before.
- Every *K* refinements, learn new functions from last *K* samples. Refine with them.

- Use CEGAR as before.
- Recursion to generalize to multiple levels as before.
- Refinement as before.
- Every *K* refinements, learn new functions from last *K* samples. Refine with them.
- Learning using decision trees by ID3 algorithm.

- Use CEGAR as before.
- Recursion to generalize to multiple levels as before.
- Refinement as before.
- Every *K* refinements, learn new functions from last *K* samples. Refine with them.
- Learning using decision trees by ID3 algorithm.
- Additional heuristic: If a learned function still works, keep it. "Don't fix what ain't broke."

Current Implementation: Experiments



Towards SMT

- in SMT we always have equality
- almost always need uninterpreted functions
- Challenge: learning uninterpreted functions
- looking at finite models

 $(\forall x)(\operatorname{range}(x) \to \operatorname{memory}(x) = c)$

$\forall X. \phi$

• ϕ has no further quantifiers and no functions (just predicates and constants)

$\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .

$\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .
- Finite model property: formulas has a model iff it has a model of size ≤ n.

$\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .
- Finite model property: formulas has a model iff it has a model of size ≤ n.
- Therefore we can look for a model with the universe $*_1, \ldots, *_{n'}, n' \leq n$.

1. $\alpha \leftarrow \texttt{true}$

2. Find interpretation for α : $\mathcal{I} \leftarrow \text{SAT}(\alpha)$

- 2. Find interpretation for α : $\mathcal{I} \leftarrow SAT(\alpha)$
- 3. If no interpretation, formula is *false*. STOP.

- 2. Find interpretation for α : $\mathcal{I} \leftarrow SAT(\alpha)$
- 3. If no interpretation, formula is *false*. STOP.
- 4. Test interpretation: $\mu \leftarrow \text{SAT}(\exists X. \neg \phi[\mathcal{I}])$

- 2. Find interpretation for α : $\mathcal{I} \leftarrow SAT(\alpha)$
- 3. If no interpretation, formula is *false*. STOP.
- 4. Test interpretation: $\mu \leftarrow \text{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 5. If no counterexample, formula is *true*. STOP.

- 2. Find interpretation for α : $\mathcal{I} \leftarrow \text{SAT}(\alpha)$
- 3. If no interpretation, formula is *false*. STOP.
- 4. Test interpretation: $\mu \leftarrow \text{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 5. If no counterexample, formula is *true*. STOP.
- 6. Strengthen abstraction: $\alpha \leftarrow \alpha \land \phi[\mu/X]$

1. $\alpha \leftarrow \texttt{true}$

- 2. Find interpretation for α : $\mathcal{I} \leftarrow SAT(\alpha)$
- 3. If no interpretation, formula is *false*. STOP.
- 4. Test interpretation: $\mu \leftarrow \text{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 5. If no counterexample, formula is *true*. STOP.
- 6. Strengthen abstraction: $\alpha \leftarrow \alpha \land \phi[\mu/X]$
- 7. GOTO 2

Janota

Learning in Finite Models' CEGAR

1. Consider some finite grounding:

 $\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \phi[\mu]$ p_i predicates, c_i constants,

Learning in Finite Models' CEGAR

- 1. Consider some finite grounding:
 - $\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \phi[\mu]$ p_i predicates, c_i constants,
- 2. Calculate interpretation by e.g. Ackermanization.

- 1. Consider some finite grounding:
 - $\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \phi[\mu]$ p_i predicates, c_i constants,
- 2. Calculate interpretation by e.g. Ackermanization.
- 3. The interpretation only matters on the existing ground terms.

- 1. Consider some finite grounding:
 - $\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \phi[\mu]$ p_i predicates, c_i constants,
- 2. Calculate interpretation by e.g. Ackermanization.
- 3. The interpretation only matters on the existing ground terms.
- 4. *Learn* entire interpretation from observing values of existing terms.

1. $\forall X. \ p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$

- 1. $\forall X. \ p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:

- 1. $\forall X. \ p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$

- 1. $\forall X. \ p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$
- 4. Partial interpretation:

$$t \triangleq *_1$$

$$p(*_0 \dots, *_0) \triangleq \mathsf{False}$$

$$p(*_1 \dots, *_0) \triangleq \mathsf{True}$$

- 1. $\forall X. \ p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$
- 4. Partial interpretation:

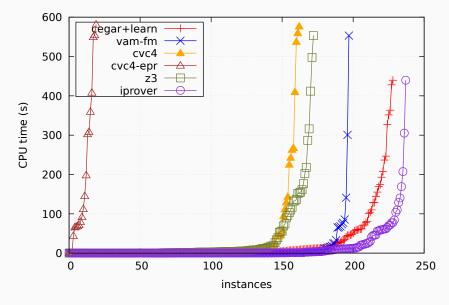
$$t \triangleq *_1$$

$$p(*_0 \dots, *_0) \triangleq \mathsf{False}$$

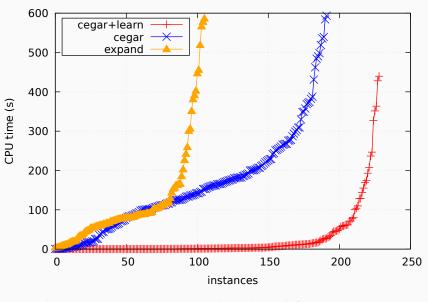
$$p(*_1 \dots, *_0) \triangleq \mathsf{True}$$

5. Learn: $t \triangleq *_1$ $p(X_1, \dots, X_n) \triangleq (X_1 = *_1)$

Results EPR

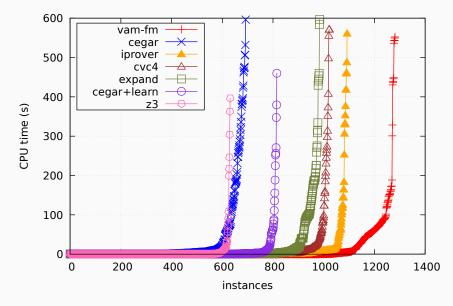


Results EPR: QFM



Janota

Results SAT NON-EPR



• Observing a formula while solving, learn from that.

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For $\ldots \exists \mathbb{B}^n \forall \mathbb{B}^m \ldots$, learning $\mathbb{B}^n \to \mathbb{B}$

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For $\ldots \exists \mathbb{B}^n \forall \mathbb{B}^m \ldots$, learning $\mathbb{B}^n \to \mathbb{B}$

• Learning interpretations in finite models from partial interpretations:

For $\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For $\ldots \exists \mathbb{B}^n \forall \mathbb{B}^m \ldots$, learning $\mathbb{B}^n \to \mathbb{B}$

• Learning interpretations in finite models from partial interpretations:

For $\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

• How can we learn strategies based on functions?

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For $\ldots \exists \mathbb{B}^n \forall \mathbb{B}^m \ldots$, learning $\mathbb{B}^n \to \mathbb{B}$

• Learning interpretations in finite models from partial interpretations:

For $\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- How can we learn strategies based on functions?
- Infinite domains?

- Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For $\ldots \exists \mathbb{B}^n \forall \mathbb{B}^m \ldots$, learning $\mathbb{B}^n \to \mathbb{B}$

• Learning interpretations in finite models from partial interpretations:

For $\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- How can we learn strategies based on functions?
- Infinite domains?
- Learning in the presence of theories?

Janota

Thank You for Your Attention!

Questions?



Towards generalization in QBF solving via machine learning.

In AAAI Conference on Artificial Intelligence.

J., M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement. In SAT, pages 114–128.

 J., M. and Marques-Silva, J. (2011).
 Abstraction-based algorithm for 2QBF. In SAT.