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Intro: QBF, Expansion, Games,

Careful expansion



SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)
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SMT Satisfiability Modulo Theories

• reasoning in first order logic

• under a given theory, e.g. linear arithmetic without quantifiers

• focus: software verification, debugging, . . .

• formulas may be huge, solvers are not based on saturation but

on SAT technology
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How is SMT Used in SW Verification

Program
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How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

FALSE

TRUE

UNSOLVED / TIMEOUT
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SMT Impact
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Advertisement:

Hiring postdocs and PhD students to work on SMT + ML.
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QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f ) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))
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Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.
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Solving QBF



Solving by CEGAR Expansion

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Can be solved by SAT
(∧

µ∈2U φ[µ]
)

. Impractical!

Observe:

∃E .
∧
µ∈2U φ[µ]⇒ ∃E .

∧
µ∈ω φ[µ]

for some ω ⊆ 2U

What is a good ω?
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Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E

• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi ]
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Abstraction-Based Algorithm for a Winning Move

Algorithm for ∃∀. Generalize to arbitrary number of alternations

using recursion. [J. et al., 2012].

1 Function Solve(∃X∀Y . φ)

2 α← true // start with an empty abstraction

3 while true do

4 τ ← SAT(α) // find a candidate

5 if τ = ⊥ then return ⊥
6 µ← Solve(¬φ[X ← τ ]) // find a countermove

7 if µ = ⊥ then return τ

8 α← α ∧ φ[Y ← µ] // refine abstraction

Janota Towards Machine Learning for SMT 12 / 31



Results, QBF-Gallery ’14, Application Track
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Careful Expansion: Good Example

∃x . . . ∀y . . . . φ ∧ y

Setting countermove y ← 0 yields false. Stop.

∃x . . . ∀y . . . . x ∨ φ
Setting candidate x ← 1 yields true (impossible to falsify). Stop.
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Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop
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Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
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Learning in QBF



Issue

• CEGAR requires 2n SAT calls for the formula

∃x1 . . . xn∀y1 . . . yn.
∨

i∈1..n
xi ⇔ yi

• BUT: We know that the formula is immediately false if we set

yi ← ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: instead of plugging in constants, plug in functions.

• Where do we get the functions?
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Use Machine Learning

[J., 2018]

1. Enumerate some number of candidate–countermove pairs.

2. Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.
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Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0
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1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT (x1 ⇔ ¬x1 ∨
∨

i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .
• Eventually we learn the right functions.
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Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”
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Current Implementation: Experiments
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Towards SMT



Towards SMT

• in SMT we always have equality

• almost always need uninterpreted functions

• Challenge: learning uninterpreted functions

• looking at finite models

(∀x)(range(x)→ memory(x) = c)

Janota Towards Machine Learning for SMT 22 / 31



Bernays-Schönfinkel (EPR)

∀X . φ

• φ has no further quantifiers and no functions (just predicates

and constants)

• φ uses predicates p1, . . . , pm and constants c1, . . . , cn.

• Finite model property: formulas has a model iff it has a model

of size ≤ n.

• Therefore we can look for a model with the universe

∗1, . . . , ∗n′ , n′ ≤ n.
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CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X ]

7. GOTO 2
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Learning in Finite Models’ CEGAR

1. Consider some finite grounding:

∃p1 . . . pm∃c1 . . . cn
∧
µ∈ω . φ[µ]

pi predicates, ci constants,

2. Calculate interpretation by e.g. Ackermanization.

3. The interpretation only matters on the existing ground terms.

4. Learn entire interpretation from observing values of existing

terms.
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Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:
3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)
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Results EPR
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Results EPR: QFM
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Results SAT NON-EPR
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Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?
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Thank You for Your Attention!

Questions?
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