
Towards Machine Learning for SMT

Mikoláš Janota

MLR, 30 April 2020

Janota Towards Machine Learning for SMT 1 / 31

Outline

Intro: QBF, Expansion, Games, Careful expansion

Solving QBF

Learning in QBF

Towards SMT

Janota Towards Machine Learning for SMT 2 / 31

Intro: QBF, Expansion, Games,

Careful expansion

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SAT and QBF

• SAT — for a Boolean formula, determine if it is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y . (x ↔ y)

• Quantifications as shorthands for connectives

(∀ = ∧, ∃ = ∨)

Example:

(1) ∀x∃y . (x ↔ y)

(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)

(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

(4) 1 (True)

Janota Towards Machine Learning for SMT 3 / 31

SMT Satisfiability Modulo Theories

• reasoning in first order logic

• under a given theory, e.g. linear arithmetic without quantifiers

• focus: software verification, debugging, . . .

• formulas may be huge, solvers are not based on saturation but

on SAT technology

Janota Towards Machine Learning for SMT 4 / 31

SMT Satisfiability Modulo Theories

• reasoning in first order logic

• under a given theory, e.g. linear arithmetic without quantifiers

• focus: software verification, debugging, . . .

• formulas may be huge, solvers are not based on saturation but

on SAT technology

Janota Towards Machine Learning for SMT 4 / 31

SMT Satisfiability Modulo Theories

• reasoning in first order logic

• under a given theory, e.g. linear arithmetic without quantifiers

• focus: software verification, debugging, . . .

• formulas may be huge, solvers are not based on saturation but

on SAT technology

Janota Towards Machine Learning for SMT 4 / 31

SMT Satisfiability Modulo Theories

• reasoning in first order logic

• under a given theory, e.g. linear arithmetic without quantifiers

• focus: software verification, debugging, . . .

• formulas may be huge, solvers are not based on saturation but

on SAT technology

Janota Towards Machine Learning for SMT 4 / 31

How is SMT Used in SW Verification

Program

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

FALSE

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

FALSE

TRUE

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

FALSE

TRUE

UNSOLVED / TIMEOUT

Janota Towards Machine Learning for SMT 5 / 31

How is SMT Used in SW Verification

Program Formula

Verification

Condition

Generation

“Is there a bug?”

SMT Solver

FALSE

TRUE

UNSOLVED / TIMEOUT

POSTMAN

Janota Towards Machine Learning for SMT 5 / 31

SMT Impact

SMT

Compiler

Verification

Fo
rm

al
iz

ed

M
at

he
m

at
ic

s P
roduct

C
onfiguration

SW
Synthesis

SW

Verification

Schedullin
g

SWTesting

M
L

R
ob

us
tn

es
s

B
io-

inform
atics

Janota Towards Machine Learning for SMT 6 / 31

Advertisement:

Hiring postdocs and PhD students to work on SMT + ML.

Janota Towards Machine Learning for SMT 7 / 31

QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))

Janota Towards Machine Learning for SMT 8 / 31

QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))

Janota Towards Machine Learning for SMT 8 / 31

QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))

Janota Towards Machine Learning for SMT 8 / 31

QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))

Janota Towards Machine Learning for SMT 8 / 31

QBF is a strict subset of Bernays-Schönfinkel (EPR)

• Consider the QBF:

∀u∃e. u ↔ e

1. Introduce a predicate for truth,

2. each existential variable replace by a predicate,

3. universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f) ∧
(∀Xu. is-true(Xu)↔ pe(Xu))

• Alternatively, use equality:

t 6= f ∧ (∀Xu. (Xu = t)↔ pe(Xu))

Janota Towards Machine Learning for SMT 8 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Quantification and Two-player Games

• In this talk we consider prenex form: Quantifier-prefix .Matrix

Example ∀u1u2∃e1e2. (¬u1 ∨ e1) ∧ (u2 ∨ ¬e2)

• A QBF represents a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.

Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.

Janota Towards Machine Learning for SMT 9 / 31

Solving QBF

Solving by CEGAR Expansion

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Can be solved by SAT
(∧

µ∈2U φ[µ]
)

. Impractical!

Observe:

∃E .
∧
µ∈2U φ[µ]⇒ ∃E .

∧
µ∈ω φ[µ]

for some ω ⊆ 2U

What is a good ω?

Janota Towards Machine Learning for SMT 10 / 31

Solving by CEGAR Expansion

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Can be solved by SAT
(∧

µ∈2U φ[µ]
)

. Impractical!

Observe:

∃E .
∧
µ∈2U φ[µ]⇒ ∃E .

∧
µ∈ω φ[µ]

for some ω ⊆ 2U

What is a good ω?

Janota Towards Machine Learning for SMT 10 / 31

Solving by CEGAR Expansion

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Can be solved by SAT
(∧

µ∈2U φ[µ]
)

. Impractical!

Observe:

∃E .
∧
µ∈2U φ[µ]⇒ ∃E .

∧
µ∈ω φ[µ]

for some ω ⊆ 2U

What is a good ω?

Janota Towards Machine Learning for SMT 10 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E

• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E
• SAT(¬φ[τ0]) = µ0 assignment to U

• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E
• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E

• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E
• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U

• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E
• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E

• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Solving by CEGAR Expansion Contd.

∃E ∀U . φ ≡ ∃E .
∧
µ∈2U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E
• SAT(¬φ[τ0]) = µ0 assignment to U
• SAT(φ[µ0]) = τ1 assignment to E
• SAT(¬φ[τ1]) = µ2 assignment to U
• SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to E
• After n iterations

∃E .
∧

i∈1..n φ[τi]

Janota Towards Machine Learning for SMT 11 / 31

Abstraction-Based Algorithm for a Winning Move

Algorithm for ∃∀. Generalize to arbitrary number of alternations

using recursion. [J. et al., 2012].

1 Function Solve(∃X∀Y . φ)

2 α← true // start with an empty abstraction

3 while true do

4 τ ← SAT(α) // find a candidate

5 if τ = ⊥ then return ⊥
6 µ← Solve(¬φ[X ← τ]) // find a countermove

7 if µ = ⊥ then return τ

8 α← α ∧ φ[Y ← µ] // refine abstraction

Janota Towards Machine Learning for SMT 12 / 31

Results, QBF-Gallery ’14, Application Track

Janota Towards Machine Learning for SMT 13 / 31

Careful Expansion: Good Example

∃x . . . ∀y φ ∧ y

Setting countermove y ← 0 yields false. Stop.

∃x . . . ∀y x ∨ φ
Setting candidate x ← 1 yields true (impossible to falsify). Stop.

Janota Towards Machine Learning for SMT 14 / 31

Careful Expansion: Good Example

∃x . . . ∀y φ ∧ y

Setting countermove y ← 0 yields false. Stop.

∃x . . . ∀y x ∨ φ
Setting candidate x ← 1 yields true (impossible to falsify). Stop.

Janota Towards Machine Learning for SMT 14 / 31

Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

Janota Towards Machine Learning for SMT 15 / 31

Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

Janota Towards Machine Learning for SMT 15 / 31

Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

Janota Towards Machine Learning for SMT 15 / 31

Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

Janota Towards Machine Learning for SMT 15 / 31

Careful Expansion: Bad Example

∃x∀y . x ⇔ y

1. x ← 1 candidate

2. SAT(¬(1⇔ y)) . . . y ← 0 countermove

3. SAT(x ⇔ 0) . . . x ← 0 candidate

4. SAT(¬(0⇔ y)) . . . y ← 1 countermove

5. SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

Janota Towards Machine Learning for SMT 15 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Careful Expansion: Ugly Example

∃x1x2∀y1y2. x1 ⇔ y1 ∨ x2 ⇔ y2

1. x1, x2 ← 0, 0

2. SAT(¬(0⇔ y1 ∨ ¬0⇔ y2)) . . . y1 ← 1, y2 ← 1

3. SAT(x1 ⇔ 1 ∨ x2 ⇔ 1) . . . x1, x2 ← 0, 1

4. SAT(¬(0⇔ y1 ∨ 1⇔ y2)) . . . y1 ← 1, y2 ← 0

5. SAT
(
(x1 ⇔ 1 ∨ x2 ⇔ 1) ∧ (x1 ⇔ 1 ∨ x2 ⇔ 0)

)
. . .

6. . . .

Janota Towards Machine Learning for SMT 16 / 31

Learning in QBF

Issue

• CEGAR requires 2n SAT calls for the formula

∃x1 . . . xn∀y1 . . . yn.
∨

i∈1..n
xi ⇔ yi

• BUT: We know that the formula is immediately false if we set

yi ← ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: instead of plugging in constants, plug in functions.

• Where do we get the functions?

Janota Towards Machine Learning for SMT 17 / 31

Issue

• CEGAR requires 2n SAT calls for the formula

∃x1 . . . xn∀y1 . . . yn.
∨

i∈1..n
xi ⇔ yi

• BUT: We know that the formula is immediately false if we set

yi ← ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: instead of plugging in constants, plug in functions.

• Where do we get the functions?

Janota Towards Machine Learning for SMT 17 / 31

Issue

• CEGAR requires 2n SAT calls for the formula

∃x1 . . . xn∀y1 . . . yn.
∨

i∈1..n
xi ⇔ yi

• BUT: We know that the formula is immediately false if we set

yi ← ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: instead of plugging in constants, plug in functions.

• Where do we get the functions?

Janota Towards Machine Learning for SMT 17 / 31

Issue

• CEGAR requires 2n SAT calls for the formula

∃x1 . . . xn∀y1 . . . yn.
∨

i∈1..n
xi ⇔ yi

• BUT: We know that the formula is immediately false if we set

yi ← ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: instead of plugging in constants, plug in functions.

• Where do we get the functions?

Janota Towards Machine Learning for SMT 17 / 31

Use Machine Learning

[J., 2018]

1. Enumerate some number of candidate–countermove pairs.

2. Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

Janota Towards Machine Learning for SMT 18 / 31

Use Machine Learning

[J., 2018]

1. Enumerate some number of candidate–countermove pairs.

2. Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

Janota Towards Machine Learning for SMT 18 / 31

Use Machine Learning

[J., 2018]

1. Enumerate some number of candidate–countermove pairs.

2. Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

Janota Towards Machine Learning for SMT 18 / 31

Use Machine Learning

[J., 2018]

1. Enumerate some number of candidate–countermove pairs.

2. Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

Janota Towards Machine Learning for SMT 18 / 31

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

Janota Towards Machine Learning for SMT 19 / 31

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT (x1 ⇔ ¬x1 ∨
∨

i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .
• Eventually we learn the right functions.

Janota Towards Machine Learning for SMT 19 / 31

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT (x1 ⇔ ¬x1 ∨
∨

i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .
• Eventually we learn the right functions.

Janota Towards Machine Learning for SMT 19 / 31

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT (x1 ⇔ ¬x1 ∨
∨

i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.

Janota Towards Machine Learning for SMT 19 / 31

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0

0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT (x1 ⇔ ¬x1 ∨
∨

i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .
• Eventually we learn the right functions.

Janota Towards Machine Learning for SMT 19 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K

samples. Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.

“Don’t fix what ain’t broke.”

Janota Towards Machine Learning for SMT 20 / 31

Current Implementation: Experiments

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

C
P

U
ti

m
e

(s
)

instances

qfun-64
qfun-128

rareqs
qfun-64-f

quabs
gq

Janota Towards Machine Learning for SMT 21 / 31

Towards SMT

Towards SMT

• in SMT we always have equality

• almost always need uninterpreted functions

• Challenge: learning uninterpreted functions

• looking at finite models

(∀x)(range(x)→ memory(x) = c)

Janota Towards Machine Learning for SMT 22 / 31

Bernays-Schönfinkel (EPR)

∀X . φ

• φ has no further quantifiers and no functions (just predicates

and constants)

• φ uses predicates p1, . . . , pm and constants c1, . . . , cn.

• Finite model property: formulas has a model iff it has a model

of size ≤ n.

• Therefore we can look for a model with the universe

∗1, . . . , ∗n′ , n′ ≤ n.

Janota Towards Machine Learning for SMT 23 / 31

Bernays-Schönfinkel (EPR)

∀X . φ

• φ has no further quantifiers and no functions (just predicates

and constants)

• φ uses predicates p1, . . . , pm and constants c1, . . . , cn.

• Finite model property: formulas has a model iff it has a model

of size ≤ n.

• Therefore we can look for a model with the universe

∗1, . . . , ∗n′ , n′ ≤ n.

Janota Towards Machine Learning for SMT 23 / 31

Bernays-Schönfinkel (EPR)

∀X . φ

• φ has no further quantifiers and no functions (just predicates

and constants)

• φ uses predicates p1, . . . , pm and constants c1, . . . , cn.

• Finite model property: formulas has a model iff it has a model

of size ≤ n.

• Therefore we can look for a model with the universe

∗1, . . . , ∗n′ , n′ ≤ n.

Janota Towards Machine Learning for SMT 23 / 31

Bernays-Schönfinkel (EPR)

∀X . φ

• φ has no further quantifiers and no functions (just predicates

and constants)

• φ uses predicates p1, . . . , pm and constants c1, . . . , cn.

• Finite model property: formulas has a model iff it has a model

of size ≤ n.

• Therefore we can look for a model with the universe

∗1, . . . , ∗n′ , n′ ≤ n.

Janota Towards Machine Learning for SMT 23 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

CEGAR for Finite Models

∃p1 . . . pm∃c1 . . . cn∀X . φ
pi predicates, ci constants,X variables

1. α← true

2. Find interpretation for α: I ← SAT(α)

3. If no interpretation, formula is false. STOP.

4. Test interpretation: µ← SAT(∃X . ¬φ[I])

5. If no counterexample, formula is true. STOP.

6. Strengthen abstraction: α← α ∧ φ[µ/X]

7. GOTO 2

Janota Towards Machine Learning for SMT 24 / 31

Learning in Finite Models’ CEGAR

1. Consider some finite grounding:

∃p1 . . . pm∃c1 . . . cn
∧
µ∈ω . φ[µ]

pi predicates, ci constants,

2. Calculate interpretation by e.g. Ackermanization.

3. The interpretation only matters on the existing ground terms.

4. Learn entire interpretation from observing values of existing

terms.

Janota Towards Machine Learning for SMT 25 / 31

Learning in Finite Models’ CEGAR

1. Consider some finite grounding:

∃p1 . . . pm∃c1 . . . cn
∧
µ∈ω . φ[µ]

pi predicates, ci constants,
2. Calculate interpretation by e.g. Ackermanization.

3. The interpretation only matters on the existing ground terms.

4. Learn entire interpretation from observing values of existing

terms.

Janota Towards Machine Learning for SMT 25 / 31

Learning in Finite Models’ CEGAR

1. Consider some finite grounding:

∃p1 . . . pm∃c1 . . . cn
∧
µ∈ω . φ[µ]

pi predicates, ci constants,
2. Calculate interpretation by e.g. Ackermanization.

3. The interpretation only matters on the existing ground terms.

4. Learn entire interpretation from observing values of existing

terms.

Janota Towards Machine Learning for SMT 25 / 31

Learning in Finite Models’ CEGAR

1. Consider some finite grounding:

∃p1 . . . pm∃c1 . . . cn
∧
µ∈ω . φ[µ]

pi predicates, ci constants,
2. Calculate interpretation by e.g. Ackermanization.

3. The interpretation only matters on the existing ground terms.

4. Learn entire interpretation from observing values of existing

terms.

Janota Towards Machine Learning for SMT 25 / 31

Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:
3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)

Janota Towards Machine Learning for SMT 26 / 31

Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:

3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)

Janota Towards Machine Learning for SMT 26 / 31

Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:
3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)

Janota Towards Machine Learning for SMT 26 / 31

Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:
3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)

Janota Towards Machine Learning for SMT 26 / 31

Learning in Finite Models’ CEGAR, Example

1. ∀X . p(X1, . . . ,Xn)⇔ (X1 = t)

2. Ground by {Xi , ∗0} and {X1 , ∗1,X1 , ∗0 . . .Xn , ∗0}:
3. (p(∗0, . . . , ∗0)⇔ ∗0 = t) ∧ (p(∗1, . . . , ∗0)⇔ ∗1 = t)

4. Partial interpretation:

t , ∗1
p(∗0 . . . , ∗0) , False

p(∗1 . . . , ∗0) , True

5. Learn:
t , ∗1
p(X1, . . . ,Xn) , (X1 = ∗1)

Janota Towards Machine Learning for SMT 26 / 31

Results EPR

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

C
P
U

 t
im

e
 (

s
)

instances

 cegar+learn
 vam-fm

 cvc4
 cvc4-epr

 z3
 iprover

Janota Towards Machine Learning for SMT 27 / 31

Results EPR: QFM

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

C
P
U

 t
im

e
 (

s
)

instances

 cegar+learn
 cegar

 expand

Janota Towards Machine Learning for SMT 28 / 31

Results SAT NON-EPR

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400

C
P
U

 t
im

e
 (

s)

instances

 vam-fm
 cegar

 iprover
 cvc4

 expand
 cegar+learn

 z3

Janota Towards Machine Learning for SMT 29 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B

• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Summary and Future

• Observing a formula while solving, learn from that.

• Learning objects in the considered theory. (rather than

strategies, etc.)

• Learning from Booleans:

For . . . ∃Bn∀Bm . . . , learning Bn → B

• Learning interpretations in finite models from partial

interpretations:

For ∃(D1 × · · · × Dk 7→ B)∀F1 × · · · × Fl . . . ,

learning D1 × · · · × Dk → B
• How can we learn strategies based on functions?

• Infinite domains?

• Learning in the presence of theories?

Janota Towards Machine Learning for SMT 30 / 31

Thank You for Your Attention!

Questions?

Janota Towards Machine Learning for SMT 31 / 31

J., M. (2018).

Towards generalization in QBF solving via machine

learning.

In AAAI Conference on Artificial Intelligence.

J., M., Klieber, W., Marques-Silva, J., and Clarke, E. M.

(2012).

Solving QBF with counterexample guided refinement.

In SAT, pages 114–128.

J., M. and Marques-Silva, J. (2011).

Abstraction-based algorithm for 2QBF.

In SAT.

Janota Towards Machine Learning for SMT 31 / 31

	Intro: QBF, Expansion, Games, Careful expansion
	Solving QBF
	Learning in QBF
	Towards SMT

