Learning-Assisted Reasoning within Interactive Theorem Provers

Thibault Gauthier

April 30, 2020

What is interactive theorem proving?

Goal: Provides a formal proof of a theorem

Human: High-level proof plan

Automation: fills the gap in the proof.

What is it useful for?

- Verifying programs (CompCert, SEL4, CakeML)
- Verifying mathematical statements: 4-color, Kepler

What it should be useful for?

- Help discover new mathematical proofs

1) HOL4 interactive theorem prover

2) HOL(y)Hammer automation

3) TacticToe automation

Interactive Theorem Provers	Theorems	Constants
Mizar Mizar	51086	9172
Coq 🎐	23320	4841
HOL4 👰	16476	2247
HOL Light 🎬	16191	820
Isabelle/HOL 谷	14814	1076
Matita 💭	1712	629

Philosophy of HOL4 logic

Set theory vs Type theory

How to represent a formula in HOL4 ?

How to represent a formula in HOL4 ?

$$\forall (\lambda x. (= ((+x) 0) x))$$

HOL4 calculus (basic rules)

Natural deduction presented in sequents with one conclusion:

- Rules for logical connectives
- Rules for equality
- Rules for functions
- 4 additional axioms
- Definitions of new functions.

Secure: only using these rules, one can derive new theorems.

Programming new rules from the basic rules

Examples of non-trivial theorem producing procedures

1) Transitive closure checker:

Proves that two formulas are equal using a set of equalities.

2) Simplifier: Simplify a theorem using set of rewriting rules A **tactic** takes a goal g and produces new goals and a validation. The validation takes the proven new goals and proves g.

A **goal** is a sequent that is not proven. The set of assumption of the sequent is often empty, so we can often consider the goal to just be a formula.

Common tactics: INDUCT_TAC, REWRITE_TAC, METIS_TAC

Which theorems are useful for the prove a goal (conjecture) g?

1) Theorems that are similar to g.

2) Theorems that were used in proofs of theorems similar to g.

Theorem prediction: similar theorems

	Formula	Syntactic features
Conjecture	$\forall x, y. (x+y) \times (x-y) = x^2 - y^2$	
Library	$\forall x, y, z. \ x \times (y+z) = x \times y + x \times z$	
	$\forall x, y. \ x + y = y + x$	
	$\forall x, y. \ x \times y = y \times x$	
	$e^{i\pi}+1=0$	
	$(x^2)' = 2 \times x$	

Theorem prediction: similar theorems

	Formula	Syntactic features
Conjecture	$\forall x, y. (x+y) \times (x-y) = x^2 - y^2$	+,×, ²
	$\forall x, y, z. \ x \times (y+z) = x \times y + x \times z$	×,+
	$\forall x, y. \ x + y = y + x$	+
Library	$\forall x, y. \ x \times y = y \times x$	×
	$e^{i\pi}+1=0$	$e, i, \times, \pi, +, 1, 0$
	$(x^2)' = 2 \times x$	′,2,×, ²

$\rightarrow \mathsf{rule}$

 \bigcirc lemma

$\rightarrow \mathsf{rule}$

\bigcirc lemma

- $\rightarrow \mathsf{rule}$
- \bigcirc lemma

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

There exist higher-order ATPs: Satallax, Leo-3.

Translation: Lambda-lifting

Higher-order:

 $\forall k. \text{ linear } (\lambda x. \ k \times x)$

Higher-order (lambda-free):

 $\forall k \ x. \ \mathbf{f} \ k \ x =_{def} k \times x$

 $\forall k$. linear (**f** k)

Translation: Apply operator

Higher-order:

$$\forall f. (I f) x = f x$$

First-order:

$$\forall f. ap(ap(I, f), x) = ap(f, x)$$

Translation: Apply operator

Higher-order:

 $\forall f. (I f) x = f x$

First-order:

$$\forall f. ap(ap(I, f), x) = ap(f, x)$$

Optional axiom: $f_1(x) = ap(f, x)$

Type encoding

$$\forall x : real. \ l(x) = x$$

FOF guards:

$$\forall x : set. \ x \in real \Rightarrow I(x) = x$$

Additional axiom: $\forall y. \ y \in real \Rightarrow I(y) \in real$

FOF tags:

$$\forall x : set. \ s(real, l(s(real, x))) = s(real, x)$$

Polymorphism? Type variables as term variables.

Re-proving

Tested library	Hammer	Benchmark	Success
ф·	MizAR	standard library	40% (60%?)
	SledgeHammer	judgement day	77%
ROC LUIM	Hol(y)Hammer	flyspeck	39%
	Hol(y)Hammer	standard library	50%
2	CoqHammer	standard library	41%

HOL(y)Hammer can solve a given goal automatically by:

- select relevant theorems among tens of thousands of theorems
- translating those theorems and the goal to ATPs

TacticToe

TacticToe

Tactics	Useful for			
Solvers	linear system, differential equations			
Simplifiers	reducing fractions, differentiation			
Induction	natural numbers, lists, trees			

Proof recording

Original proof:

```
INDUCT_TAC THENL [REWRITE_TAC, METIS_TAC]
```

Modified proof:

(R numLib.INDUCT_TAC) THENL
[R boolLib.REWRITE_TAC, R metisLib.METIS_TAC]

Database of tactics:

R (f n) (f (SUC n)) \Rightarrow transitive R: INDUCT_TAC n * m \le n * p \Rightarrow (n = 0) V m \le p : REWRITE_TAC INJ f U(:num) s \Rightarrow INFINITE s : METIS_TAC ...

Given a new goal g, which tactics lead towards a proof?

Tactics that were useful for goals similar to g.

Given a new goal g, which tactics lead towards a proof?

Tactics that were useful for goals similar to g.

Similarity determined using the nearest neighbor algorithm.

Policy prediction algorithm

Database of tactics is a map from goals to tactics.

New goal:

LENGTH (MAP f l) = LENGTH l

Policy for the new goal:

Rank	Tactic	Policy
1	REWRITE_TAC	0.5
2	METIS_TAC	0.25
4	INDUCT_TAC	0.0625

Predicting the value of a goal (or list of goals)

Database of goals:

- Positive examples: produced during TacticToe search and appear in the final proof.
- Negative examples: produced during TacticToe search but do not appear in the final proof.

Future idea: tactic modeling using the value.

Optimizations

Improve recorded data to create better predictions during search.

Optimizations: orthogonalization

Issue: Many tactics are doing the same job on a goal g.

Solution: Competition for g where the most popular tactic wins.

Optimizations: orthogonalization

```
Recorded goal-tactic pair:

LENGTH (MAP f l) = LENGTH l: INDUCT_TAC

Competition:

Progress Coverage

INDUCT_TAC Yes 136

REWRITE_TAC No 2567

METIS_TAC Yes 694
```

Added to the database:

LENGTH (MAP f l) = LENGTH l: METIS_TAC

Result: 6 % improvement.

Issue: Some theorems are never used inside tactics.

Solution: Abstract all lists of theorems in a tactic and instantiate them depending on the target goal.

Optimizations: abstraction

Abstraction algorithm:

Original	:	REWRITE_TAC	[T1,T2	2]		
Abstraction	:	REWRITE_TAC	Х			
Instantiation:		REWRITE_TAC	[T67,	Τ1 ,	Τ4З,]

Question: Dow we keep the original or the abstraction ?

Answer: Let them compete during orthogonalization.

Result: 15% improvement

Issue: Predictions are too slow during proof search.

Solution: Preselect 500 suitable tactics by importing proofs (many tactics) from related goals.

Proof search: search tree

Here p is the parent node of a_1, \ldots, a_n and PUCT is a heuristic to decide which branch (child) to expand next.

$$Score(a_i) = CurValue(a_i) + c_{exploration} * rac{PriorPolicy(a_i)}{CurPolicy(a_i)}$$

$$CurPolicy(a_i) = rac{1 + Visit(a_i)}{\sqrt{Visit(p)}}$$

 $CurValue(a_i) = \sum_{a' \in Descendants(a_i)} rac{PriorValue(a')}{card(Descendants(a_i))}$

Re-proving

Tested library Proof automation Success Image: Constraint of the second sec

Re-proving: HOL4 proofs found in less than x seconds

Re-proving: percentage of solved HOL4 proof of size x

Before:

boolLib.REWRITE_TAC [DB.fetch "list" "EVERY_CONJ",...]
THEN

BasicProvers.Induct_on [HolKernel.QUOTE "1"]

THENL

[BasicProvers.SRW_TAC [] [], simpLib.ASM_SIMP_TAC (BasicProvers.srw_ss ()) [boolLib.DISJ_IMP_THM, DB.fetch "list" "MAP", DB.fetch "list" "CONS_11", boolLib.FORALL_AND_THM]]

After:

```
Induct_on `l` THENL
[SRW_TAC [] [],
ASM_SIMP_TAC (srw_ss ())
[DISJ_IMP_THM, FORALL_AND_THM]]
```

Summary

TacticToe learns from human proofs to solve new goals.

Advantages over ATPs (E prover) for ITP (HOL4) users:

- Includes domain specific automation found in the ITP. (tactics)
- Generated proofs are human-level proofs.
- No translation or reconstruction needed.

Limitations: TacticToe cannot program its own tactics yet.

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

$$2 \times \sum_{x=0}^{n} x = n \times (n+1)$$

Induct_on `n` THENL
[SRW_TAC [] [] THEN METIS_TAC [SUM_1,I_THM],
Induct_on `n` THENL
[ASM_SIMP_TAC arith_ss [SUM_def_compute],
ASM_SIMP_TAC arith_ss
[ADD_CLAUSES,SUM_FOLDL,MULT_CLAUSES] THEN

SRW_TAC [ARITH_ss] [COUNT_LIST_SNOC,FOLDL_SNOC]]]

$$2 \times \sum_{x=0}^{n} x = n \times (n+1)$$

Induct_on 'n'

$$2 \times \sum_{x=0}^{0} x = 0 \times (0+1)$$

$$2 \times \sum_{x=0}^{n} x = n \times (n+1) \Rightarrow 2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1)$$

$$2 \times \sum_{x=0}^{0} x = 0 \times (0+1)$$

SRW_TAC [] []

$$\sum_{x=0}^{0} x = 0$$

METIS_TAC [SUM_1, I_THM]

$$2 \times \sum_{x=0}^{n} x = n \times (n+1) \Rightarrow 2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1)$$

Induct_on 'n'

$$2 \times \sum_{x=0}^{0} x = 0 \times (0+1) \Rightarrow 2 \times \sum_{x=0}^{1} x = (0+1) \times ((0+1)+1)$$

$$(2 \times \sum_{x=0}^{n} x = n \times (n+1) \Rightarrow 2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1))$$

$$\Rightarrow$$
$$(2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1) \Rightarrow 2 \times \sum_{x=0}^{(n+1)+1} x = ((n+1)+1) \times (((n+1)+1)+1))$$

$$2 \times \sum_{x=0}^{0} x = 0 \times (0+1) \Rightarrow 2 \times \sum_{x=0}^{1} x = (0+1) \times ((0+1)+1)$$

ASM_SIMP_TAC arith_ss [SUM_def_compute]
Proof inspection

$$(2 \times \sum_{x=0}^{n} x = n \times (n+1) \Rightarrow 2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1))$$

$$\Rightarrow$$
$$(2 \times \sum_{x=0}^{n+1} x = (n+1) \times ((n+1)+1) \Rightarrow 2 \times \sum_{x=0}^{(n+1)+1} x = ((n+1)+1) \times (((n+1)+1)+1))$$

$$2 \times FOLDL (\lambda \times n'. n' + x) 0 (COUNT_LIST ((n+1)+1)) =$$

$$2 \times n + (n \times (n+1)+1) + 1$$

$$\Rightarrow$$

$$2 \times FOLDL (\lambda \times n'. n' + x) 0 (COUNT_LIST (((n+1)+1)+1)) =$$

$$4 \times n + (n \times (n+1)+2) + 1 + 1 + 1 + 1$$

SRW_TAC [ARITH_ss] [COUNT_LIST_SNOC, FOLDL_SNOC]