Learning-Assisted Reasoning within
Interactive Theorem Provers

Thibault Gauthier

April 30, 2020

1/55

What is interactive theorem proving?

Goal: Provides a formal proof of a theorem

Human: High-level proof plan

Automation: fills the gap in the proof.

2 /55

What is it useful for?
- Verifying programs (CompCert, SEL4, CakeML)

- Verifying mathematical statements: 4-color, Kepler

What it should be useful for?

- Help discover new mathematical proofs

3 /55

Plan

1) HOL4 interactive theorem prover

2) HOL(y)Hammer automation

3) TacticToe automation

4 /55

Interactive Theorem Provers Theorems Constants
Mizar HERR 51086 9172
Coq 23320 4841
HOL4 16476 2247
HOL Light 16191 820
Isabelle/HOL 14814 1076
Matita L 1712 629

5 /55

Philosophy of HOL4 logic

Set theory vs Type theory

6 /55

How to represent a formula in HOL4 ?

logical operators variables constants

7 /55

How to represent a formula in HOL4 ?

logical operators variables constants

¥ (Ax. (= ((+ x) 0) X))

7 /55

HOL4 calculus (basic rules)

Natural deduction presented in sequents with one conclusion:
- Rules for logical connectives

- Rules for equality

- Rules for functions

- 4 additional axioms

- Definitions of new functions.

Secure: only using these rules, one can derive new theorems.

8 /55

Programming new rules from the basic rules

Examples of non-trivial theorem producing procedures

1) Transitive closure checker:
Proves that two formulas are equal using a set of equalities.

2) Simplifier:
Simplify a theorem using set of rewriting rules

9 /55

Programming tactics

A tactic takes a goal g and produces new goals and a validation.
The validation takes the proven new goals and proves g.

A goal is a sequent that is not proven. The set of assumption of
the sequent is often empty, so we can often consider the goal to
just be a formula.

Common tactics: INDUCT_TAC, REWRITE_TAC, METIS_TAC

10 / 55

THENL tactical composes the effect of tactics.

11 /55

THENL tactical composes the effect of tactics.

INDUCT_TAC

11 /55

THENL tactical composes the effect of tactics.

METIS_TAC
REWRITE_TAC

INDUCT_TAC

11 /55

THENL tactical composes the effect of tactics.

METIS_TAC
REWRITE_TAC

INDUCT_TAC

11 /55

THENL tactical composes the effect of tactics.

@)

METIS_TAC
REWRITE_TAC
INDUCT_TAC

THENL
[REWRITE_TAC,METIS_TAC]

INDUCT_TAC

11 /55

HolyHammer

library
conjecture

|
proof

12 /55

HolyHammer

library
conjecture

provers € z2 V

proof

13 / 55

HolyHammer

library
conjecture

translation

provers € z2 V

proof

13 / 55

HolyHammer

library
conjecture

theorem prediction

translation

provers € z2 V

proof

13 / 55

Theorem prediction

Which theorems are useful for the prove a goal (conjecture) g?
1) Theorems that are similar to g.

2) Theorems that were used in proofs of theorems similar to g.

14 / 55

Theorem prediction: similar theorems

Formula Syntactic features

Conjecture

Vx,y. (x+y) % (x—y) = x*—y?

Library

Vx,y,z. xx (y+z)=xxXy+xxz
VX,y. x+y=y+x

VX, y. XXy =y XX

e™+1=0

(x?) =2 xx

15 / 55

Theorem prediction: similar theorems

Formula Syntactic features
Conjecture Vx,y. (x +y) x (x —y) = x2 — y? +,%, ?
Vx,y,z. xx (y+z)=xxXy+xxz X,+
VX,y. x+y=y+x +
Library VX,y. XXy =y XX X
eT4+1=0 e,i,x,m +,1,0
(X2)IZ2><X /727Xa 2

15 / 55

Theorem prediction: dependencies

49 @ 2@ 1@
85 @
@ conjecture
® theorem
— rule

O lemma

16 / 55

Theorem prediction: dependencies

9@ 12 71
72 12 71
85 @
@ conjecture
® theorem
— rule

O lemma

16 / 55

Theorem prediction: dependencies

85 49 12 71

@ conjecture
® theorem
— rule

O lemma

16 / 55

Theorem prediction: dependencies

85 49 12 71

® conjecture Theorem Dependencies
@® th

corem 85 491271
— rule

O lemma 102 51 45 86 12

16 / 55

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

17 / 55

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

There exist higher-order ATPs: Satallax, Leo-3.

17 / 55

Translation: Lambda-lifting

Higher-order:
Vk. linear (Ax. k X x)

Higher-order (lambda-free):
Vk x. f k x =g k X x

Vk. linear (f k)

18 / 55

Translation: Apply operator

Higher-order:
V. (I f)yx=fx

First-order:
Vf. ap(ap(/,f),x) = ap(f,x)

19 / 55

Translation: Apply operator

Higher-order:
V. (I f)yx=fx

First-order:
Vf. ap(ap(/,f),x) = ap(f,x)

Optional axiom: fi(x) = ap(f,x)

19 / 55

Type encoding

Vx:real. I(x) = x
FOF guards:

Vx:set. x € real = I(x) = x
Additional axiom: Yy. y € real = I(y) € real
FOF tags:

Vx:set. s(real,l(s(real,x))) = s(real,x)

Polymorphism? Type variables as term variables.

20 / 55

Re-proving

Tested library Hammer
MizAR
SledgeHammer
s Hol(y)Hammer

Hol(y)Hammer

CogHammer

Benchmark
standard library
judgement day

flyspeck
standard library

standard library

Success
40% (60%7?)
77%
39%
50%

41%

21 /55

Summary

HOL(y)Hammer can solve a given goal automatically by:
- select relevant theorems among tens of thousands of theorems

- translating those theorems and the goal to ATPs

22 /55

TacticToe

library
conjecture

23 /55

TacticToe

library
conjecture

tactic prediction

proof search

proof

24 / 55

Tactics Useful for

Solvers linear system, differential equations
Simplifiers reducing fractions, differentiation

Induction natural numbers, lists, trees

25 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording } Search tree
-{ Tactic policy]
Knowledge base
{ Tactic value }
.
E Optimizations 1
/ [Proof minimization}

E Predictors

i

26 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording } Search tree
-{ Tactic policy]
Knowledge base
{ Tactic value]
.
E Optimizations 1
/ [Proof minimizationj

E Predictors

i

26 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording J Search tree
-{ Tactic policy]
Knowledge base
{ Tactic value]
.
E Optimizations 1
/ [Proof minimizationj

E Predictors

i

27 / 55

Proof recording

Original proof:
INDUCT.TAC THENL [REWRITE_TAC, METIS_TAC]
Modified proof:

(R numLib.INDUCT_TAC) THENL
[R boolLib.REWRITE_TAC, R metisLib.METIS_TAC]

Database of tactics:

R (f n) (f (SUC n)) = transitive R: INDUCT_TAC
n+*+m<ns*xp=(n=0)Vmnm<p : REWRITE_TAC
INJ £ U(:num) s = INFINITE s : METIS_TAC

28 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording } Search tree

Tactic policy

Knowledge base

» Tactic evaluation

-/ \ J

-

)

Proof minimization

E Optimizations

e

[Predictors

)) Yo
-/

i

29 / 55

Policy prediction algorithm

Given a new goal g, which tactics lead towards a proof?

Tactics that were useful for goals similar to g.

30 / 55

Policy prediction algorithm

Given a new goal g, which tactics lead towards a proof?

Tactics that were useful for goals similar to g.

Similarity determined using the nearest neighbor algorithm.

30 / 55

Policy prediction algorithm

Database of tactics is a map from goals to tactics.

R (f n) (f (SUC n)) = transitive R: INDUCT_TAC

n+*m<ns*xp=(n=20)Vmnp : REWRITE_TAC
INJ £ U(:num) s = INFINITE s : METIS_TAC
New goal:

LENGTH (MAP f 1) = LENGTH 1

Policy for the new goal:

Rank Tactic Policy
1 REWRITE_TAC 0.5
2 METIS_TAC 0.25

4 INDUCT_-TAC 0.0625

31 /55

Predicting the value of a goal (or list of goals)

Database of goals:

P Positive examples: produced during TacticToe search and
appear in the final proof.

» Negative examples: produced during TacticToe search but do
not appear in the final proof.

Future idea: tactic modeling using the value.

32 /55

Plan

Tactic Prediction Proof search

Formal library

i

E Proof recording } Search tree

d Tactic policy

Knowledge base

Tactic value

o

-

)

Proof minimization

[Optimizations

e

[Predictors

¥
)) Y ounn
-/

y

33 /55

Optimizations

Improve recorded data to create better predictions during search.

34 /55

Optimizations: orthogonalization

Issue: Many tactics are doing the same job on a goal g.

Solution: Competition for g where the most popular tactic wins.

35 /55

Optimizations: orthogonalization

Recorded goal-tactic pair:
LENGTH (MAP f 1) = LENGTH 1: INDUCT_TAC
Competition:

Progress Coverage

INDUCT.TAC Yes 136

REWRITE_TAC No 2567

METIS_TAC Yes 694

Added to the database:

LENGTH (MAP f 1) = LENGTH 1: METIS_TAC

Result: 6 % improvement.

36 / 55

Optimizations: abstraction

Issue: Some theorems are never used inside tactics.

Solution: Abstract all lists of theorems in a tactic
and instantiate them depending on the target goal.

37 /55

Optimizations: abstraction

Abstraction algorithm:

Original : REWRITE_TAC [T1,T2]
Abstraction : REWRITE_TAC X
Instantiation: REWRITE.TAC [T67, T1, T43, ..]

Question: Dow we keep the original or the abstraction ?
Answer: Let them compete during orthogonalization.

Result: 15% improvement

38 /55

Optimizations: preselection

Issue: Predictions are too slow during proof search.

Solution: Preselect 500 suitable tactics by importing proofs (many
tactics) from related goals.

39 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording } Search tree

Tactic policy

Knowledge base

» Tactic evaluation

|

-

)

Proof minimization

E Optimizations

e

E Predictors

N Y
-/

i

40 / 55

Proof search: search tree

ay

0-O

41 /55

Proof search: advanced tree search

42 /55

Proof search: advanced tree search

42 /55

Proof search: advanced tree search

42 /55

Proof search: advanced tree search

0.7,0.3,0.8

42 /55

Proof search: advanced tree search (PUCT)

Here p is the parent node of ai,...,a, and PUCT is a heuristic to
decide which branch (child) to expand next.

PriorPolicy(a;
Score(a,-) = CurVa/ue(ai) ~+ Cexploration * Curpollcyy((al))
1+ Visit(a;
CurPolicy(a;) = L Visit(a;)
Visit(p)
PriorValue(a')
card(Descendants(a;))

CurValue(a;) =

a' € Descendants(a;)

43 /55

Re-proving

Tested library Proof automation Success
> \l
Ly,)
2N / 50%

7= % 66%

44 / 55

Re-proving: HOL4 proofs found in less than x seconds

4,000 |-
3,000
2,000
1,000 B —— TacticToe |
| --- E prover
0 ! | | | | |

0 10 20 30 40 50 60

45 / 55

Re-proving: percentage of solved HOL4 proof of size x

100

80

60

40

20

—— TacticToe
--- E prover

46 / 55

Tactic Prediction Proof search

Formal library

i

[Proof recording } Search tree
{ Tactic policy]
Knowledge base
{ Tactic value]
.
E Optimizations 1
/ [Proof minimization}

E Predictors

i

47 / 55

Before:

boolLib.REWRITE_TAC [DB.fetch "list" "EVERY_CONJ", ...]
THEN

BasicProvers.Induct_on [HolKernel.QUOTE "1"]
THENL
[BasicProvers.SRW_TAC [] [1,
simpLib.ASM_SIMP_TAC (BasicProvers.srw.ss ())
[boolLib.DISJ_IMP_THM, DB.fetch "list" "MAP",
DB.fetch "list" "CONS_11", boolLib.FORALL_AND_THM]]

After:

Induct_on ‘1' THENL
[SRW_TAC [] [1,
ASM_SIMP_TAC (srw_.ss ())
[DISJ_IMP_THM, FORALL_AND_THM]]

48 / 55

Summary

TacticToe learns from human proofs to solve new goals.

Advantages over ATPs (E prover) for ITP (HOL4) users:

- Includes domain specific automation found in the ITP.
(tactics)

- Generated proofs are human-level proofs.

- No translation or reconstruction needed.

Limitations: TacticToe cannot program its own tactics yet.

http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

49 / 55

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Proof inspection

n
2x Y x=nx(n+1)
x=0

Induct_-on ‘n' THENL
[SRW_.TAC [] [] THEN METIS_TAC [SUM._1,I_THM],
Induct_on ‘n‘' THENL
[ASM_SIMP_TAC arith_ss [SUM._def_compute],
ASM_SIMP_TAC arith_ss
[ADD_CLAUSES, SUM_FOLDL, MULT_CLAUSES] THEN
SRW_TAC [ARITH_ss] [COUNT_LIST_SNOC,FOLDL_SNOC]]]

50 / 55

Proof inspection

n

2x Y x=nx(n+1)
x=0

Induct_on '‘n‘

n n+1
2 X

x=0 x=0

x=nx(n+1)=2x Y x=(n+1)x((n+1)+1)

51 / 55

Proof inspection

SRW_TAC [] []

METIS_TAC [SUM.1, I_THM]

52 / 55

Proof inspection

2% ix:nx(n—i—l):>2><nilx:(n+1)><((n+1)—|—1)
x=0 x=0

Induct_on '‘n‘t

2 x iox:Ox(O+1):>2>< iox:(O—i—l)x((O—i—l)—i—l)

n n+1
(2x Y x=nx(n+1)=2x Y x=(n+1)x((n+1)+1))

x=0 x=0
=
n+1 (n+1)+1
2x Y x=(n+1)x((n+1)+1)=2x Y x=((n+1)+1)x(((n+1)+1)+1))
x=0 x=0

53 / 55

Proof inspection

x=0x(0+1)=2x ix:(0+1)x((0+1)+1)
x=0 x=0

0
2 X

ASM_SIMP_TAC arith_ss [SUM._def_compute]

54 / 55

Proof inspection

n n+1
(2x Y x=nx(n+1)=2x Y x=(n+1)x((n+1)+1))
x=0 x=0
=
n+1 (n+1)+1

2x Y x=(n+1)x((n+1)+1)=2x Y x=((n+1)+1)x(((n+1)+1)+1))
x=0 x=0

ASM_SIMP_TAC arith_ss
[ADD_CLAUSES, SUM_FOLDL, MULT_CLAUSES]

2x FOLDL (Ax n'. ' +x) 0 (COUNT _LIST ((n+1)+1))=
2xn+(nx(n+1)+1)+1
=
2x FOLDL (Ax n'. n'+x) 0 (COUNT_LIST (((n4+1)+1)+1)) =

4xn+(nx(n+1)+2)+1+141+1
SRW_TAC [ARITH_ss] [COUNT_LIST_SNOC, FOLDL_SNOC]

55 / 55

