
Learning-Assisted Reasoning within
Interactive Theorem Provers

Thibault Gauthier

April 30, 2020

1 / 55

What is interactive theorem proving?

Goal: Provides a formal proof of a theorem

Human: High-level proof plan

Automation: fills the gap in the proof.

2 / 55

What is it useful for?
- Verifying programs (CompCert, SEL4, CakeML)
- Verifying mathematical statements: 4-color, Kepler

What it should be useful for?
- Help discover new mathematical proofs

3 / 55

Plan

1) HOL4 interactive theorem prover

2) HOL(y)Hammer automation

3) TacticToe automation

4 / 55

Interactive Theorem Provers Theorems Constants

Mizar 51086 9172

Coq 23320 4841

HOL4 16476 2247

HOL Light 16191 820

Isabelle/HOL 14814 1076

Matita 1712 629

5 / 55

Philosophy of HOL4 logic

Set theory vs Type theory

6 / 55

How to represent a formula in HOL4 ?

∀ x . x + 0 = x

logical operators variables constants

∀ (λx . (= ((+ x) 0) x))

7 / 55

How to represent a formula in HOL4 ?

∀ x . x + 0 = x

logical operators variables constants

∀ (λx . (= ((+ x) 0) x))

7 / 55

HOL4 calculus (basic rules)

Natural deduction presented in sequents with one conclusion:

- Rules for logical connectives

- Rules for equality

- Rules for functions

- 4 additional axioms

- Definitions of new functions.

Secure: only using these rules, one can derive new theorems.

8 / 55

Programming new rules from the basic rules

Examples of non-trivial theorem producing procedures

1) Transitive closure checker:
Proves that two formulas are equal using a set of equalities.

2) Simplifier:
Simplify a theorem using set of rewriting rules

9 / 55

Programming tactics

A tactic takes a goal g and produces new goals and a validation.
The validation takes the proven new goals and proves g .

A goal is a sequent that is not proven. The set of assumption of
the sequent is often empty, so we can often consider the goal to
just be a formula.

Common tactics: INDUCT TAC, REWRITE TAC, METIS TAC

10 / 55

THENL tactical composes the effect of tactics.

REWRITE TAC
METIS TAC

INDUCT TAC
THENL

[REWRITE TAC,METIS TAC]
INDUCT TAC

11 / 55

THENL tactical composes the effect of tactics.

REWRITE TAC
METIS TAC

INDUCT TAC
THENL

[REWRITE TAC,METIS TAC]

INDUCT TAC

11 / 55

THENL tactical composes the effect of tactics.

REWRITE TAC
METIS TAC

INDUCT TAC
THENL

[REWRITE TAC,METIS TAC]

INDUCT TAC

11 / 55

THENL tactical composes the effect of tactics.

REWRITE TAC
METIS TAC

INDUCT TAC
THENL

[REWRITE TAC,METIS TAC]

INDUCT TAC

11 / 55

THENL tactical composes the effect of tactics.

REWRITE TAC
METIS TAC

INDUCT TAC
THENL

[REWRITE TAC,METIS TAC]
INDUCT TAC

11 / 55

HolyHammer

proof

conjecture
library

12 / 55

HolyHammer

translation

theorem prediction

provers

proof

conjecture
library

13 / 55

HolyHammer

translation

theorem prediction

provers

proof

conjecture
library

13 / 55

HolyHammer

translation

theorem prediction

provers

proof

conjecture
library

13 / 55

Theorem prediction

Which theorems are useful for the prove a goal (conjecture) g?

1) Theorems that are similar to g .

2) Theorems that were used in proofs of theorems similar to g .

14 / 55

Theorem prediction: similar theorems

Formula Syntactic features

Conjecture ∀x ,y . (x + y)× (x −y) = x2−y2

+,×, 2

∀x ,y ,z . x × (y + z) = x ×y + x × z

×,+

∀x ,y . x + y = y + x

+

Library ∀x ,y . x ×y = y ×x

×

eiπ + 1 = 0

e, i ,×,π,+,1,0

(x2)′ = 2×x

′,2,×, 2

15 / 55

Theorem prediction: similar theorems

Formula Syntactic features

Conjecture ∀x ,y . (x + y)× (x −y) = x2−y2 +,×, 2

∀x ,y ,z . x × (y + z) = x ×y + x × z ×,+

∀x ,y . x + y = y + x +

Library ∀x ,y . x ×y = y ×x ×

eiπ + 1 = 0 e, i ,×,π,+,1,0

(x2)′ = 2×x ′,2,×, 2

15 / 55

Theorem prediction: dependencies

49 12 71

72 12 71

85

49 12 71

conjecture
theorem

→ rule
lemma

Theorem Dependencies

85 49 12 71
102 51 45 86 12
.

16 / 55

Theorem prediction: dependencies

49 12 71

72 12 71

85

49 12 71

conjecture
theorem

→ rule
lemma

Theorem Dependencies

85 49 12 71
102 51 45 86 12
.

16 / 55

Theorem prediction: dependencies

49 12 71

72 12 71

85 49 12 71

conjecture
theorem

→ rule
lemma

Theorem Dependencies

85 49 12 71
102 51 45 86 12
.

16 / 55

Theorem prediction: dependencies

49 12 71

72 12 71

85 49 12 71

conjecture
theorem

→ rule
lemma

Theorem Dependencies

85 49 12 71
102 51 45 86 12
.

16 / 55

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

There exist higher-order ATPs: Satallax, Leo-3.

17 / 55

Translation

HOL4 higher-order formulas vs ATPs first-order formulas.

There exist higher-order ATPs: Satallax, Leo-3.

17 / 55

Translation: Lambda-lifting

Higher-order:
∀k. linear (λx . k×x)

Higher-order (lambda-free):

∀k x . f k x =def k×x

∀k. linear (f k)

18 / 55

Translation: Apply operator

Higher-order:
∀f . (I f) x = f x

First-order:
∀f . ap(ap(I, f),x) = ap(f ,x)

Optional axiom: f1(x) = ap(f ,x)

19 / 55

Translation: Apply operator

Higher-order:
∀f . (I f) x = f x

First-order:
∀f . ap(ap(I, f),x) = ap(f ,x)

Optional axiom: f1(x) = ap(f ,x)

19 / 55

Type encoding

∀x : real . I(x) = x

FOF guards:

∀x :set. x ∈ real ⇒ I(x) = x

Additional axiom: ∀y . y ∈ real ⇒ I(y) ∈ real

FOF tags:

∀x :set. s(real , I(s(real ,x))) = s(real ,x)

Polymorphism? Type variables as term variables.

20 / 55

Re-proving

Tested library Hammer Benchmark Success

MizAR standard library 40% (60%?)

SledgeHammer judgement day 77%

Hol(y)Hammer flyspeck 39%

Hol(y)Hammer standard library 50%

CoqHammer standard library 41%

21 / 55

Summary

HOL(y)Hammer can solve a given goal automatically by:

- select relevant theorems among tens of thousands of theorems

- translating those theorems and the goal to ATPs

22 / 55

TacticToe

proof

conjecture
library

23 / 55

TacticToe

tactic prediction

proof search

proof

conjecture
library

24 / 55

Tactics Useful for

Solvers linear system, differential equations

Simplifiers reducing fractions, differentiation

Induction natural numbers, lists, trees

25 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic value

Proof minimization

Proof

26 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic value

Proof minimization

Proof

26 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic value

Proof minimization

Proof

27 / 55

Proof recording

Original proof:
INDUCT TAC THENL [REWRITE TAC, METIS TAC]

Modified proof:
(R numLib.INDUCT TAC) THENL

[R boolLib.REWRITE TAC, R metisLib.METIS TAC]

Database of tactics:
R (f n) (f (SUC n)) ⇒ transitive R: INDUCT TAC
n ∗ m ≤ n ∗ p ⇒ (n = 0) ∨ m ≤ p : REWRITE TAC
INJ f U(:num) s ⇒ INFINITE s : METIS TAC
. . .

28 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic evaluation

Proof minimization

Proof

29 / 55

Policy prediction algorithm

Given a new goal g , which tactics lead towards a proof?

Tactics that were useful for goals similar to g .

Similarity determined using the nearest neighbor algorithm.

30 / 55

Policy prediction algorithm

Given a new goal g , which tactics lead towards a proof?

Tactics that were useful for goals similar to g .

Similarity determined using the nearest neighbor algorithm.

30 / 55

Policy prediction algorithm

Database of tactics is a map from goals to tactics.
R (f n) (f (SUC n)) ⇒ transitive R: INDUCT TAC
n ∗ m ≤ n ∗ p ⇒ (n = 0) ∨ m ≤ p : REWRITE TAC
INJ f U(:num) s ⇒ INFINITE s : METIS TAC

New goal:
LENGTH (MAP f l) = LENGTH l

Policy for the new goal:
Rank Tactic Policy
1 REWRITE TAC 0.5
2 METIS TAC 0.25
. . .
4 INDUCT TAC 0.0625
. . .

31 / 55

Predicting the value of a goal (or list of goals)

Database of goals:
I Positive examples: produced during TacticToe search and

appear in the final proof.
I Negative examples: produced during TacticToe search but do

not appear in the final proof.

Future idea: tactic modeling using the value.

32 / 55

Plan
Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic value

Proof minimization

Proof

33 / 55

Optimizations

Improve recorded data to create better predictions during search.

34 / 55

Optimizations: orthogonalization

Issue: Many tactics are doing the same job on a goal g .

Solution: Competition for g where the most popular tactic wins.

35 / 55

Optimizations: orthogonalization

Recorded goal-tactic pair:
LENGTH (MAP f l) = LENGTH l: INDUCT TAC

Competition:
Progress Coverage

INDUCT TAC Yes 136
REWRITE TAC No 2567
METIS TAC Yes 694

Added to the database:
LENGTH (MAP f l) = LENGTH l: METIS TAC

Result: 6 % improvement.

36 / 55

Optimizations: abstraction

Issue: Some theorems are never used inside tactics.

Solution: Abstract all lists of theorems in a tactic
and instantiate them depending on the target goal.

37 / 55

Optimizations: abstraction

Abstraction algorithm:
Original : REWRITE TAC [T1,T2]
Abstraction : REWRITE TAC X
Instantiation: REWRITE TAC [T67, T1, T43, . . .]

Question: Dow we keep the original or the abstraction ?

Answer: Let them compete during orthogonalization.

Result: 15% improvement

38 / 55

Optimizations: preselection

Issue: Predictions are too slow during proof search.

Solution: Preselect 500 suitable tactics by importing proofs (many
tactics) from related goals.

39 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic evaluation

Proof minimization

Proof

40 / 55

Proof search: search tree

gi ... gn...g0a0

...aj...a1

t1 tj tm

41 / 55

Proof search: advanced tree search

0.250.5 0.125

0.250.5 0.125

42 / 55

Proof search: advanced tree search

0.7

0.7

0.250.5 0.125

0.250.5 0.125

42 / 55

Proof search: advanced tree search

0.7,0.3

0.7,0.3

0.25
0.5 0.125

0.3

0.250.5 0.125

42 / 55

Proof search: advanced tree search

0.7,0.3,0.8

0.80.7,0.3

0.250.5 0.125

0.3

0.250.5 0.125

42 / 55

Proof search: advanced tree search (PUCT)

Here p is the parent node of a1, . . . ,an and PUCT is a heuristic to
decide which branch (child) to expand next.

Score(ai) = CurValue(ai) + cexploration ∗
PriorPolicy(ai)
CurPolicy(ai)

CurPolicy(ai) = 1 + Visit(ai)√
Visit(p)

CurValue(ai) = ∑
a′∈Descendants(ai)

PriorValue(a′)
card(Descendants(ai))

43 / 55

Re-proving

Tested library Proof automation Success

50%

66%

44 / 55

Re-proving: HOL4 proofs found in less than x seconds

0 10 20 30 40 50 600

1,000

2,000

3,000

4,000

TacticToe
E prover

45 / 55

Re-proving: percentage of solved HOL4 proof of size x

0 2 4 6 8 10 12 14 16 18 200

20

40

60

80

100

TacticToe
E prover

46 / 55

Tactic Prediction

Formal library

Proof recording

Knowledge base

Optimizations

Predictors

Proof search

Conjecture

Search tree

Tactic policy

Tactic value

Proof minimization

Proof

47 / 55

Before:
boolLib.REWRITE TAC [DB.fetch "list" "EVERY_CONJ",...]

THEN
BasicProvers.Induct on [HolKernel.QUOTE "l"]

THENL
[BasicProvers.SRW TAC [] [],
simpLib.ASM SIMP TAC (BasicProvers.srw ss ())
[boolLib.DISJ IMP THM, DB.fetch "list" "MAP",
DB.fetch "list" "CONS_11", boolLib.FORALL AND THM]]

After:
Induct on ‘l‘ THENL

[SRW TAC [] [],
ASM SIMP TAC (srw ss ())
[DISJ IMP THM, FORALL AND THM]]

48 / 55

Summary

TacticToe learns from human proofs to solve new goals.

Advantages over ATPs (E prover) for ITP (HOL4) users:
- Includes domain specific automation found in the ITP.

(tactics)
- Generated proofs are human-level proofs.
- No translation or reconstruction needed.

Limitations: TacticToe cannot program its own tactics yet.

http://grid01.ciirc.cvut.cz/˜mptp/tactictoe_demo.ogv

49 / 55

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Proof inspection

2×
n

∑
x=0

x = n× (n + 1)

Induct on ‘n‘ THENL
[SRW TAC [] [] THEN METIS TAC [SUM 1,I THM],
Induct on ‘n‘ THENL

[ASM SIMP TAC arith ss [SUM def compute],
ASM SIMP TAC arith ss

[ADD CLAUSES,SUM FOLDL,MULT CLAUSES] THEN
SRW TAC [ARITH ss] [COUNT LIST SNOC,FOLDL SNOC]]]

50 / 55

Proof inspection

2×
n

∑
x=0

x = n× (n + 1)

Induct on ‘n‘

2×
0

∑
x=0

x = 0× (0 + 1)

2×
n

∑
x=0

x = n× (n + 1)⇒ 2×
n+1

∑
x=0

x = (n + 1)× ((n + 1) + 1)

51 / 55

Proof inspection

2×
0

∑
x=0

x = 0× (0 + 1)

SRW TAC [] []

0

∑
x=0

x = 0

METIS TAC [SUM 1,I THM]

52 / 55

Proof inspection

2×
n

∑
x=0

x = n× (n + 1)⇒ 2×
n+1

∑
x=0

x = (n + 1)× ((n + 1) + 1)

Induct on ‘n‘

2×
0

∑
x=0

x = 0× (0 + 1)⇒ 2×
1

∑
x=0

x = (0 + 1)× ((0 + 1) + 1)

(2×
n
∑

x=0
x = n× (n +1)⇒ 2×

n+1
∑

x=0
x = (n +1)× ((n +1)+1))

⇒

(2×
n+1
∑

x=0
x = (n +1)× ((n +1)+1)⇒ 2×

(n+1)+1

∑
x=0

x = ((n +1)+1)× (((n +1)+1)+1))

53 / 55

Proof inspection

2×
0

∑
x=0

x = 0× (0 + 1)⇒ 2×
1

∑
x=0

x = (0 + 1)× ((0 + 1) + 1)

ASM SIMP TAC arith ss [SUM def compute]

54 / 55

Proof inspection

(2×
n
∑

x=0
x = n× (n +1)⇒ 2×

n+1
∑

x=0
x = (n +1)× ((n +1)+1))

⇒

(2×
n+1
∑

x=0
x = (n +1)× ((n +1)+1)⇒ 2×

(n+1)+1

∑
x=0

x = ((n +1)+1)× (((n +1)+1)+1))

ASM SIMP TAC arith ss
[ADD CLAUSES,SUM FOLDL,MULT CLAUSES]

2×FOLDL (λx n′. n′+x) 0 (COUNT LIST ((n +1)+1)) =

2×n +(n× (n +1)+1)+1

⇒

2×FOLDL (λx n′. n′+x) 0 (COUNT LIST (((n +1)+1)+1)) =

4×n +(n× (n +1)+2)+1+1+1+1

SRW TAC [ARITH ss] [COUNT LIST SNOC, FOLDL SNOC]

55 / 55

