CONNECTION CALCULUS AND ITS (REINFORCEMENT) LEARNING

Josef Urban

Czech Technical University in Prague

April 27, 2020

Automated Theorem Proving

Historical dispute: Gentzen and Hilbert

- Today two communities: Resolution (-style) and Tableaux
- But also more: instantiation-based, Satisfiability Modulo Theories (SMT), Higher-order, etc.

Possible answer: What is better in practice?

- Say the CASC competition or ITP assistance?
- Since the late 90s: resolution (superposition)

But ATP is still far from human performance

- Tableaux may be better for ML methods
- ML methods may be the decisive factor in ATP in the next years

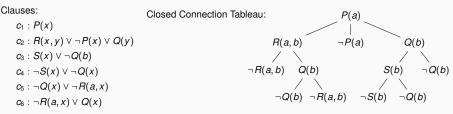
leanCoP: Lean Connection Prover [Otten 2010]

Connected tableaux calculus

· Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC (CADE ATP competition)

· despite their much larger implementation


Compact Prolog implementation, easy to modify

- Variants for other foundations: iLeanCoP, mLeanCoP
- First experiments with machine learning: MaLeCoP

Easy to imitate

leanCoP tactic in HOL Light

Lean Connection Tableaux and its Guidance

- learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps
- proof finished when all branches are closed
- · a lot of nondeterminism, requires backtracking
- · good for learning the tableau compactly represents the proof state

leanCoP calculus

Very simple rules:

- Extension unifies the current literal with a copy of a clause
- Reduction unifies the current literal with a literal on the path

axiom:
$$\frac{}{\{\}, M, Path\}}$$

reduction rule:
$$\frac{C, M, Path \cup \{L_2\}}{C \cup \{L_1\}, M, Path \cup \{L_2\}}$$

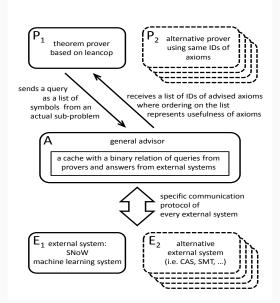
where there exists a unification substitution σ such that $\sigma(L_1) = \sigma(\overline{L_2})$

extension rule:
$$\frac{C'\setminus\{L_2\}, \textit{M}, \textit{Path} \cup \{L_1\} \qquad \textit{C}, \textit{M}, \textit{Path}}{\textit{C} \cup \{L_1\}, \textit{M}, \textit{Path}}$$

where C' is a fresh copy of some $C'' \in M$ such that $L_2 \in C'$ and $\sigma(L_1) = \sigma(\overline{L_2})$ where σ is unification substitution.

Prolog code for the core of leanCoP

```
prove (Cla, Path)
prove([Lit|Cla],Path):-
        (-NegLit=Lit;-Lit=NegLit) ->
          member(NegL, Path),
           unify with occurs check (NegL, NegLit)
           lit (NegLit, NegL, Cla1, Grnd1),
           unify with occurs check(NegL, NegLit),
          prove (Cla1, [Lit | Path])
        prove (Cla, Path).
prove([], ).
```


More detailed Prolog code of leanCoP

```
prove ([Lit | Cla], Path, PathLim, Lem, Set) :-
  \+ (member(LitC, [Lit | Cla]), member(LitP, Path), LitC==LitP)
  (-NegLit=Lit;-Lit=NegLit) -> (
      member(LitL,Lem), Lit == LitL
      member(NegL, Path),
      unify with occurs check (NegL, NegLit)
      lit (NegLit, NegL, Cla1, Grnd1),
      unify with occurs check(NegL, NegLit),
         ( Grnd1=g \rightarrow true ;
           length(Path,K), K<PathLim -> true ;
           \+ pathlim -> assert(pathlim), fail ),
      prove (Cla1, [Lit|Path], PathLim, Lem, Set)
    ), ( member(cut, Set) -> ! ; true ),
    prove (Cla, Path, PathLim, [Lit | Lem], Set).
prove ([],_,_,_,_,[]).
```

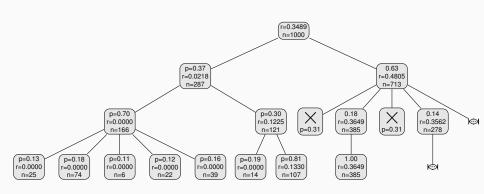
Statistical Guidance of Connection Tableau

- MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions
- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
- 20-time search shortening on the MPTP Challenge
- · second version: 2015, with C. Kaliszyk
- both prover and naive Bayes in OCAML, fast indexing
- Fairly Efficient MaLeCoP = FEMaLeCoP
- 15% improvement over untrained leanCoP on the MPTP2078 problems
- · using iterative deepening enumerate shorter proofs before longer ones

General Advising Design

LeanCoP modifications

- Consistent clausification across many problems needed for consistent learning/advice
- · Options like definition introduction need to be fixed
- · Providing training data for external advising systems
- Mechanisms for taking advice from external system(s)
- Profiling mechanisms
- External advice is quite slow: number of strategies defined trading advice for speed


Statistical Guidance of Connection Tableau – rlCoP

- 2018: stronger learners via C interface to OCAML (boosted trees)
- · remove iterative deepening, the prover can go arbitrarily deep
- added Monte-Carlo Tree Search (MCTS) AlphaGo/Zero
- MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

$$\frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N}{n_i}}$$
 (UCT - Kocsis, Szepesvari 2006)

- learning both *policy* (clause selection) and *value* (state evaluation)
- clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |
- mostly term walks of length 3 (trigrams), hashed into small integers
- · many iterations of proving and learning

Tree Example

Learn Policy and Value

Policy: Which actions to take?

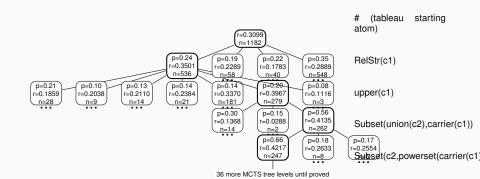
- Proportions predicted based on proportions in similar states
- Explore less the actions that were "bad" in the past
- Explore more and earlier the actions that were "good"

Value: How good (close to a proof) is a state?

- · Reward states that have few goals
- Reward easy goals

Where to get training data?

- Explore 1000 nodes using UCT
- Select the most visited action and focus on it for this proof
- A sequence of selected actions can train both policy and value


Reinforcement from scratch – 2003 problems

Iteration Proved	1 1037	2 1110	3 1166	4 1179	5 1182	6 1198	7 1196	8 1193	9 1212	10 1210
- Itoration	11	12					17	18	19	20
Proved	1206	1217	1204	1219	1223	1225	1224	1217	1226	1235

rlCoP on 2003 Mizar problems – Policy and Value only

Syster Proble	m ems pro	ved	leanCo 876		bare pro 434		rlCoP wi 770	thout po	olicy/va	alue (l	JCT on	ly)
Iteration	1	2	3		4	5	6	7	8		9	10
Proved	974	100	08 10)28	1053	1066	1054	1058	105	59	1075	1070
Iteration	11	12	13	3	14	15	16	17	18		19	20
Proved	1074	107	'9 10)77	1080	1075	1075	1087	107	71	1076	1075
Itera	ation	1	2	3	4	5	6	7	8	9	10	_
Pro	ved	809	818	821	821	818	824	856	831	842	826	
Itera	ation	11	12	13	14	15	16	17	18	19	20	_
Pro	ved	832	830	825	832	828	820	825	825	831	815	

More trees

rlCoP on 32k Mizar problems

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	IeanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	1143	431	804
Total problems proved	11581	4615	8152

- rlCoP with policy/value after 5 proving/learning iters on the training data
- 1624/1143 = 42.1% improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved Testing proved						14431 1586		14498 1591

Extensions and (re)implementations

- · plcop Prolog setting again
- · FloP longer proof, curriculum learning
- · rlcop with GNN see the paper

Feedback loop for ENIGMA on Mizar data

- Similar to rlCoP interleave proving and learning of ENIGMA guidance
- Done on 57880 Mizar problems very recently
- Ultimately a 70% improvement over the original strategy

	\mathcal{S}	$\mathcal{S} \odot \mathcal{M}_9^0$	$\mathcal{S}\oplus\mathcal{M}_9^0$	$S \odot \mathcal{M}_9^1$	$S \oplus \mathcal{M}_9^1$	$S \odot \mathcal{M}_9^2$	$\mathcal{S} \oplus \mathcal{M}_9^2$	$S \odot M$
solved	14933	16574	20366	21564	22839	22413	23467	22910
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845

	$S \odot M_{12}^3$	$\mathcal{S} \oplus \mathcal{M}_{12}^3$	$S \odot M_{16}^3$	$\mathcal{S} \oplus \mathcal{M}_{16}^3$
solved	24159	24701	25100	25397
$\mathcal{S}\%$	+61.1%	+64.8%	+68.0%	+70.0%
$\mathcal{S}+$	+9761	+10063	+10476	+10647
$\mathcal{S}-$	-535	-295	-309	-183

Some References

leanCoP and its variants:

- Jens Otten: leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions). IJCAR 2008: 283-291
- Jens Otten, Wolfgang Bibel: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36(1-2): 139-161 (2003)
- Jens Otten: MleanCoP: A Connection Prover for First-Order Modal Logic. IJCAR 2014: 269-276
- Jens Otten: nanoCoP: A Non-clausal Connection Prover. IJCAR 2016: 302-312
- Jens Otten: A Non-clausal Connection Calculus. TABLEAUX 2011: 226-241
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: Certified Connection Tableaux Proofs for HOL Light and TPTP. CPP 2015: 59-66

Machine Learning leanCoP-style systems:

- C. Kaliszyk, J. Urban, H. Michalewski, M. Olsak: Reinforcement Learning of Theorem Proving. CoRR abs/1805.07563 (2018)
- Miroslav Olsák, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning. CoRR abs/1911.12073 (2019)
- Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover. CoRR abs/2004.06997 (2020)
- Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding Longer Proofs. CoRR abs/1905.13100 (2019)
- Cezary Kaliszyk, Josef Urban: FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover. LPAR 2015: 88-96
- Josef Urban, Jirí Vyskocil, Petr Stepánek: MaLeCoP Machine Learning Connection Prover. TABLEAUX 2011: 263-277