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Neural networks

Basic unit flowing in a neural net is a real vector
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= max 0 Affine
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Convolution

Basic layer for image processing: Picture → Picture

Affine
+ ReLU

32710

Applying the same basic layer locally around every pixel.
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Convolution on a graph

Graph is a natural generalization of an image.

0

Evaluation of vertices by vectors→ evaluation of the same vertices by vectors.

Multiple incoming edges of the same type are reduced via sum, maximum,
mean, or their combination.
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Mathematical formula

Formula structure

term = Variable of var_label
| Application of func_label * term l i s t ; ;

l i t e r a l = PosTerm of term
| NegTerm of term ; ;

cnf_input = l i t e r a l l i s t l i s t ; ;

Example

(eq(X,Y) | ~eq(Y ,X) ) & eq(a ,b) & ~eq(b,a)

Goal: Interpret as a graph
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Mathematical formula
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Labels and arity

• Every label is represented by a node.

• Application a = f(x1, x2, . . . , xn) is represented by a set of 4-ary hyperedges
(f , a, x1, x2), (f , a, x2, x3), . . . , (f , a, xn−1, xn).

Hyperedges
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Negation

• Boolean negation is represented by real negation (multiplication by −1)

• We apply this negation to outcoming edges, if required.

• How to keep incoming edges invariant under negation?
• Reduction invariant under negation: average of min and max instead of max.
• No biases. (Linear transformation, not affine one)
• Odd activation function (tanh, not ReLU)
• Labels initialized to zero.

eq

~~

eq
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Initialization

• Clauses:
• three types in LeanCop (current goal, remaining goals, axioms),
• two types in premise selection (conjecture, premises)

• Terms: constant embeddings for variables, literals, applications

• Label: Zero for relations, constant for functions
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Head for MCTS

• Value:
• Reduction of all clauses
• Hidden layer (128)
• Single output (sigmoid activation)

• Actions:
• Current goal (literal) + clause + literal in clause
• Hidden layer (128)
• Single output for each action (softmax activation)
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Network summary

• Three types of nodes: Clauses (dim 32), terms (dim 32), labels (dim 64).

• Initialization by a few learned vectors

• 5 layers of graph convolution

• Head corresponding to the task
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Experiments

1 MCTS guidance for connection prover.

2 Premise selection with negative data.

3 Label guessing (same dataset as premise selection).
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Monte Carlo Tree Search on LeanCop

Original experiment

• First iteration trained on 7,348 solved problems

• 1,000 new tree expansions for every bigstep

• First iteration solved 13,679 out of 31,250 problems, second 15,268.

• Last iteration solved 16,108 problems (best)

Our experiment

• First iteration trained on 4,595 solved problems

• Bigstep whenever root has been expanded 200-times.

• First iteration 0 solved 13,300 problems, second cca 14,000.

• Other iterations not done yet.
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Premise selection

Dataset

• 32,524 queries extracted from Mizar

• Every query has balanced number of positive (useful) and negative results.

• Negative samples generated as the best scoring unuseful lemmas in
k-nearest neighbors.

Results (on testing data)

token sets Mlin Mtree Mnn label-inv

Acc 75.75% 71.41% 77.98% 79.44% 80.36%

TPR ? 80.54% 83.35% 82.00% 84.46%

TNR ? 62.28% 72.60% 76.88% 76.25%
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Label guessing

Data

• 1,517,692 occurences of 13,339 symbols

21.5% def
17.3% skolem
2.0% =
1.7% m1_subset_1
1.2% k1_zfmisc_1
1.2% r2_hidden
1.0% u1_struct_0
0.9% v1_funct_1
0.9% v1_xboole_0
0.8% v2_struct_0

. . .
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Label guessing

Results

Labels Premise selection

Individual networks 78.40% (270) 80.36%

Combined network 74.93% (174) 80.10%

excluded “skolem” and “def” 65.49% (285)
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Thank you for your attention!

Miroslav Olšák
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