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Arbitrary First-Order Formulas

A first-order signature (vocabulary): function symbols
(including constants), predicate symbols. Equality is part of
the language.

A set of variables.

Terms are built using variables and function symbols. For
example, f (x) + g(x).

Atoms, or atomic formulas are obtained by applying a
predicate symbol to a sequence of terms. For example, p(a, x)
or f (x) + g(x) ≥ 2.

Formulas: built from atoms using logical connectives ¬, ∧, ∨,
→, ↔ and quantifiers ∀, ∃. For example,
(∀x)x = 0 ∨ (∃y)y > x .
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Clauses

Literal: either an atom A or its negation ¬A.

Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

Empty clause, denoted by �: clause with 0 literals, that is,
when n = 0.

A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

A clause is ground if it contains no variables.

If a clause contains variables, we assume that it implicitly
universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).
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What an Automatic Theorem Prover is Expected to Do

Input:

a set of axioms (first order formulas) or clauses A
a conjecture (first-order formula or set of clauses) G

Question:

Does G logically follow from A?

A
?

|= G

Output:

Either yes and a proof,

or . . . ?
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Proof by Refutation

Given a problem with axioms and assumptions A = F1, . . . ,Fn and
conjecture G ,

1 negate the conjecture;

2 establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G .

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.
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General Scheme in One Slide

Read a problem P

Preprocess the problem: P =⇒ P ′

Convert P ′ into Clause Normal Form N

replacing connectives, formula naming, distributive laws
Skolemisation

Run a saturation algorithm on it, try to derive �.

computes a closure of N with respect to an inference system
logical calculus: resolution + superposition

If � is derived, report the result, maybe including a refutation.

Trying to derive � using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.
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A Bit More on the CNF Transformation

replacing unwanted connectives:

A↔ B =⇒ (A→ B) ∧ (B → A)
A→ B =⇒ ¬A ∨ B
¬(A ∨ B) =⇒ ¬A ∧ ¬B

. . .

distributive laws:

(A∧B)∨ (C ∧D) =⇒ (A∨C )∧ (A∨D)∧ (B ∨C )∧ (B ∨D)

formula naming (Tseitin / Pleisted-Greenbaum):

(A∧B)∨(C∧D) =⇒ (FAB∨(C∧D))∧(FAB → A)∧(FAB → B)

Skolemisation on an example

∀x [x 6= 0→ ∃y(x · y = 1)] =⇒ x 6= 0→ x · sky (x) = 1
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The Premise Selection Task

The set of clauses F1, . . . ,Fn,¬G to be passed to the saturation
may be too large to process efficiently

common sense reasoning tasks (big ontologies)

automatic support for interactive provers

e.g. Mizar, Isabelle, HOL, and Coq
large background libraries of already formalized math

Premise Selection:

heuristically pick a subset A′ ⊂ A = F1, . . . ,Fn such that
A′,¬G is (likely) still unsatisfiable



11/30

First-order Logic and Theorem Proving Saturation-based Proving Further Tuning and the Role of Strategies Summary

Approaches to Premise Selection

“Traditional” – SInE:

The SUMO Inference Engine

signature based relatedness to the conjucture

Machine Learning approaches:

Premise Selection for Mathematics by Corpus Analysis and
Kernel Methods. J. Autom. Reasoning (2014)

DeepMath - Deep Sequence Models for Premise Selection.
NIPS 2016

ATPboost: Learning Premise Selection in Binary Setting with
ATP Feedback. IJCAR 2018

Learning from previously discovered proofs
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Overview

Saturation-based proving

the most prominent technology for proving in FOL

provers: E, Vampire, Spass, iProver, ...

alternatives:

the tableaux approach: e.g. LeanCop
Satisfiability Modul Theories (SMT): Z3, CVC4, . . .

Topics:

A Static View: Inferences, Soundness, and Completeness

A Dynamic View: The Saturation Loop

Making It Fast in Practice
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Inference System

An inference has the form

F1 . . . Fn
G

,

where n ≥ 0 and F1, . . . ,Fn,G are formulas (clauses).

The formula G is called the conclusion of the inference;

The formulas F1, . . . ,Fn are called its premises.

An inference rule R is a set of inferences.

Every inference I ∈ R is called an instance of R.

An Inference system / calculus I is a set of inference rules.
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Derivation, Proof

Derivation in an inference system I:
a DAG built from inferences in I.
Derivation of E from E1, . . . ,Em: a finite derivation of E
whose every leaf is one of the expressions E1, . . . ,Em and the
root of which is is E .

A refutation is a derivation of the empty clause �.
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The superposition calculus
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Soundness and Completeness

Soundness

An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

An inference system is sound if every inference rule in this
system is sound.

Consequence of soundness: Let S be a set of clauses. If � can be
derived from S by a sound I then S is unsatisfiable.

1 What if the empty clause cannot be derived from S?

2 Can we systematically search for possible derivations of �?

Completeness
An inference system I is complete, if for every unsatisfiable
set of clauses S, there is a derivation of � from S using I.
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Idea of Saturation

Completess is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I.
However, this formulations gives no hint on how to search for such
a derivation.

Idea:

Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S , unless these conclusions are already in S .

If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.
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Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with
respect to a given inference system.
In theory there are three possible scenarios:

1 At some moment the empty clause � is generated, in this
case the input set of clauses is unsatisfiable.

2 Saturation will terminate without ever generating �, in this
case the input set of clauses in satisfiable.

3 Saturation will run forever, but without generating �. In this
case the input set of clauses is satisfiable.
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Saturation Algorithm in Practice

In practice there are three possible scenarios:

1 At some moment the empty clause � is generated, in this
case the input set of clauses is unsatisfiable.

2 Saturation will terminate without ever generating �, in this
case the input set of clauses in satisfiable.

3 Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set
is unsatisfiable.
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Inference Selection by Clause Selection

search space

given clause

candidate clauses

children
MEMORY
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Saturation with the Given-Clause Algorithm

Only apply inferences to the selected clause and the previously
selected clauses.

Active b Passive

U
n
p
ro
ce
ss
ed

Thus, the search space is divided in two parts:

active clauses, that participate in inferences;

passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).
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Anatomy of Saturation

Active

initially empty

backed up by sophisticated data structures (indexes) to allow
efficient processing of inferences

Passive

initially contains the clausified input

typically consists of several queues ordering clauses to process
by various (heuristical) criteria

fairness!

Unprocessed:

a temporary container

just after generation, simplify before put into passive
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The Clause Selection Task

Selecting the given clause is arguably the most important choice
point in the implementation of a saturation algorithm

If we only knew which to select up front . . .

the standard approach: two queues (age, weight) and a ratio

a natural spot for applying ML

Notable attempts so far:

Deep Network Guided Proof Search. LPAR 2017

ENIGMA: Efficient Learning-Based Inference Guiding
Machine. CICM 2017

much more work done since (Jan will tell)
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Making It Fast in Practice

Literal selection and ordering constraints

restrict applicability of inference rules

Redundancy elimination and simplifications

tautology deletions, subsumption, demodulation

Saturation loop variants

Otter loop, Discount loop, LRS

The AVATAR architecture

Efficient data structures: term sharing, indexing, ...

Specialised modes and calculi: InstGen, FMB, . . .

. . .

Strategy scheduling mode
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Options and Strategies

A typical theorem prover has many ways to set up and run the
proving process.

A naive idea: leave it up to the user to pick the best option setup,
i.e. a strategy, for the problem P at hand.

A more fruitful idea:
Automatically run a full schedule of strategies, ideally selected to
have complementary strengths/weaknesses such that they cover
the most problems.

Introduced in Gandalf, (Tammet 1998)

Vampire’s famous CASC mode
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Two more machine learning tasks:

Automatic Strategy Selection

Given a problem P pick a strategy most likely to succeed on P

e.g. MaLeS: A Framework for Automatic Tuning of
Automated Theorem Provers. J. Autom. Reasoning 2015

Automatic Strategy Invention

Automatically discover sets of (complementary) strategies
that together solve many problems (over a given benchmark)

BliStr: The Blind Strategymaker. GCAI 2015

BliStrTune: hierarchical invention of theorem proving
strategies. CPP 2017
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e.g. MaLeS: A Framework for Automatic Tuning of
Automated Theorem Provers. J. Autom. Reasoning 2015

Automatic Strategy Invention

Automatically discover sets of (complementary) strategies
that together solve many problems (over a given benchmark)

BliStr: The Blind Strategymaker. GCAI 2015

BliStrTune: hierarchical invention of theorem proving
strategies. CPP 2017
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Outline

1 First-order Logic and Theorem Proving

2 Saturation-based Proving

3 Further Tuning and the Role of Strategies

4 Summary
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Thank you!

Questions?
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